{
"cells": [
{
"cell_type": "markdown",
"id": "748b889b-6350-4d7a-be73-6b4abbaeb6bb",
"metadata": {
"editable": true,
"slideshow": {
"slide_type": ""
},
"tags": []
},
"source": [
"### Dealing with repeated measurements - Exercises & Answers"
]
},
{
"cell_type": "markdown",
"id": "40313b91-40d7-4727-82b2-eaf82368a2cd",
"metadata": {},
"source": [
"### 1. Educational hierarchies\n",
"One of the classic examples of using linear mixed models is in education, because the models can incorporate the variation that students contribute to tests, being that they're in different classrooms in different schools. \n",
"\n",
"Our first exercise is to examine a simple relationship - what is the association between the number of maths homework assignments a student completes and their scores on their mathematics exam? The dataset however has information on this relatonship from *10* different schools, and we want to incorporate that variability (because some schools may teach mathematics better or worse than others) into our model. \n",
"\n",
"The dataset is available here: https://raw.githubusercontent.com/SuryaThiru/hierarchical-model-blog/refs/heads/master/mlmldata.csv\n",
"\n",
"First import the usual things we need to get started:"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "b01d8bae-9b53-405c-a323-6e1f19661ee8",
"metadata": {
"editable": true,
"slideshow": {
"slide_type": ""
},
"tags": [
"hide-input"
]
},
"outputs": [],
"source": [
"# Your answer here\n",
"# Imports\n",
"import pandas as pd # dataframes\n",
"import seaborn as sns # plots\n",
"import statsmodels.formula.api as smf # Models\n",
"import marginaleffects as me # marginal effects\n",
"import numpy as np # numpy for some functions\n",
"import statsmodels.tools.eval_measures as measures\n",
"\n",
"# Set the style for plots\n",
"sns.set_style('whitegrid')\n",
"sns.set_context('talk')"
]
},
{
"cell_type": "markdown",
"id": "5f7ec32d-a063-4b41-a97b-638913826f09",
"metadata": {},
"source": [
"Next, read in the data. There are a lot of columns here but we do not need many, only `schid` (school identifier), `homework`, the number of assignments they completed, and `math`, the students score on a mathematics exam. Read into a dataframe called `school`, show the top 10 rows."
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "dc1a21d1-e391-4bfe-8c60-eab3beba5652",
"metadata": {
"editable": true,
"slideshow": {
"slide_type": ""
},
"tags": [
"hide-input"
]
},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" schid \n",
" stuid \n",
" ses \n",
" meanses \n",
" homework \n",
" white \n",
" parented \n",
" public \n",
" ratio \n",
" percmin \n",
" math \n",
" sex \n",
" race \n",
" sctype \n",
" cstr \n",
" scsize \n",
" urban \n",
" region \n",
" schnum \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" 7472 \n",
" 3 \n",
" -0.13 \n",
" -0.482609 \n",
" 1 \n",
" 1 \n",
" 2 \n",
" 1 \n",
" 19 \n",
" 0 \n",
" 48 \n",
" 2 \n",
" 4 \n",
" 1 \n",
" 2 \n",
" 3 \n",
" 2 \n",
" 2 \n",
" 1 \n",
" \n",
" \n",
" 1 \n",
" 7472 \n",
" 8 \n",
" -0.39 \n",
" -0.482609 \n",
" 0 \n",
" 1 \n",
" 2 \n",
" 1 \n",
" 19 \n",
" 0 \n",
" 48 \n",
" 1 \n",
" 4 \n",
" 1 \n",
" 2 \n",
" 3 \n",
" 2 \n",
" 2 \n",
" 1 \n",
" \n",
" \n",
" 2 \n",
" 7472 \n",
" 13 \n",
" -0.80 \n",
" -0.482609 \n",
" 0 \n",
" 1 \n",
" 2 \n",
" 1 \n",
" 19 \n",
" 0 \n",
" 53 \n",
" 1 \n",
" 4 \n",
" 1 \n",
" 2 \n",
" 3 \n",
" 2 \n",
" 2 \n",
" 1 \n",
" \n",
" \n",
" 3 \n",
" 7472 \n",
" 17 \n",
" -0.72 \n",
" -0.482609 \n",
" 1 \n",
" 1 \n",
" 2 \n",
" 1 \n",
" 19 \n",
" 0 \n",
" 42 \n",
" 1 \n",
" 4 \n",
" 1 \n",
" 2 \n",
" 3 \n",
" 2 \n",
" 2 \n",
" 1 \n",
" \n",
" \n",
" 4 \n",
" 7472 \n",
" 27 \n",
" -0.74 \n",
" -0.482609 \n",
" 2 \n",
" 1 \n",
" 2 \n",
" 1 \n",
" 19 \n",
" 0 \n",
" 43 \n",
" 2 \n",
" 4 \n",
" 1 \n",
" 2 \n",
" 3 \n",
" 2 \n",
" 2 \n",
" 1 \n",
" \n",
" \n",
" 5 \n",
" 7472 \n",
" 28 \n",
" -0.58 \n",
" -0.482609 \n",
" 1 \n",
" 1 \n",
" 2 \n",
" 1 \n",
" 19 \n",
" 0 \n",
" 57 \n",
" 2 \n",
" 4 \n",
" 1 \n",
" 2 \n",
" 3 \n",
" 2 \n",
" 2 \n",
" 1 \n",
" \n",
" \n",
" 6 \n",
" 7472 \n",
" 30 \n",
" -0.83 \n",
" -0.482609 \n",
" 5 \n",
" 1 \n",
" 2 \n",
" 1 \n",
" 19 \n",
" 0 \n",
" 33 \n",
" 2 \n",
" 4 \n",
" 1 \n",
" 2 \n",
" 3 \n",
" 2 \n",
" 2 \n",
" 1 \n",
" \n",
" \n",
" 7 \n",
" 7472 \n",
" 36 \n",
" -0.51 \n",
" -0.482609 \n",
" 1 \n",
" 1 \n",
" 3 \n",
" 1 \n",
" 19 \n",
" 0 \n",
" 64 \n",
" 1 \n",
" 4 \n",
" 1 \n",
" 2 \n",
" 3 \n",
" 2 \n",
" 2 \n",
" 1 \n",
" \n",
" \n",
" 8 \n",
" 7472 \n",
" 37 \n",
" -0.56 \n",
" -0.482609 \n",
" 1 \n",
" 1 \n",
" 2 \n",
" 1 \n",
" 19 \n",
" 0 \n",
" 36 \n",
" 2 \n",
" 4 \n",
" 1 \n",
" 2 \n",
" 3 \n",
" 2 \n",
" 2 \n",
" 1 \n",
" \n",
" \n",
" 9 \n",
" 7472 \n",
" 42 \n",
" 0.21 \n",
" -0.482609 \n",
" 2 \n",
" 1 \n",
" 3 \n",
" 1 \n",
" 19 \n",
" 0 \n",
" 56 \n",
" 2 \n",
" 4 \n",
" 1 \n",
" 2 \n",
" 3 \n",
" 2 \n",
" 2 \n",
" 1 \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
" schid stuid ses meanses homework white parented public ratio \\\n",
"0 7472 3 -0.13 -0.482609 1 1 2 1 19 \n",
"1 7472 8 -0.39 -0.482609 0 1 2 1 19 \n",
"2 7472 13 -0.80 -0.482609 0 1 2 1 19 \n",
"3 7472 17 -0.72 -0.482609 1 1 2 1 19 \n",
"4 7472 27 -0.74 -0.482609 2 1 2 1 19 \n",
"5 7472 28 -0.58 -0.482609 1 1 2 1 19 \n",
"6 7472 30 -0.83 -0.482609 5 1 2 1 19 \n",
"7 7472 36 -0.51 -0.482609 1 1 3 1 19 \n",
"8 7472 37 -0.56 -0.482609 1 1 2 1 19 \n",
"9 7472 42 0.21 -0.482609 2 1 3 1 19 \n",
"\n",
" percmin math sex race sctype cstr scsize urban region schnum \n",
"0 0 48 2 4 1 2 3 2 2 1 \n",
"1 0 48 1 4 1 2 3 2 2 1 \n",
"2 0 53 1 4 1 2 3 2 2 1 \n",
"3 0 42 1 4 1 2 3 2 2 1 \n",
"4 0 43 2 4 1 2 3 2 2 1 \n",
"5 0 57 2 4 1 2 3 2 2 1 \n",
"6 0 33 2 4 1 2 3 2 2 1 \n",
"7 0 64 1 4 1 2 3 2 2 1 \n",
"8 0 36 2 4 1 2 3 2 2 1 \n",
"9 0 56 2 4 1 2 3 2 2 1 "
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Your answer here\n",
"# Read in data\n",
"school = pd.read_csv('https://raw.githubusercontent.com/SuryaThiru/hierarchical-model-blog/refs/heads/master/mlmldata.csv')\n",
"school.head(10)"
]
},
{
"cell_type": "markdown",
"id": "5860ae76-fdd7-4e95-8b93-aaee8b743c15",
"metadata": {},
"source": [
"Can you use `seaborn` to visualise the association between homework and math for each of the ten schools, with a scatterplot?"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "b61f8500-fc81-4e66-a40d-b3053f738e0d",
"metadata": {
"editable": true,
"slideshow": {
"slide_type": ""
},
"tags": [
"hide-input"
]
},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAACaIAAAPGCAYAAAAbMn9PAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeXhU5fn/8c+syYQwYZEkBCEkUWEIuKJE/dKowVrCty5UaxXcFXApLm1d0PrVWkH702pdaATcUbRaFRfcUIkWBbRKhRBAE1YDAQQyhplkMsvvjzQjMTuZJTPzfl2X14Vznpm5T56Zuc95zn2exxAIBAICAAAAAAAAAAAAAAAAAOAAGaMdAAAAAAAAAAAAAAAAAAAgtlGIBgAAAAAAAAAAAAAAAADoFgrRAAAAAAAAAAAAAAAAAADdQiEaAAAAAAAAAAAAAAAAAKBbKEQDAAAAAAAAAAAAAAAAAHQLhWgAAAAAAAAAAAAAAAAAgG6hEA0AAAAAAAAAAAAAAAAA0C0UogEAAAAAAAAAAAAAAAAAuoVCNAAAAAAAAAAAAAAAAABAt5ijHQCAnumVV17RLbfcooyMDH388cdhf97DDz+sRx55REcffbQWLFhwICGHxM0336xXX3210+3XrVvXYZurr75aixcv1jXXXKPf/va3zbadcsop+u677zr1Xscdd5yeffbZZo9VVFToySef1LJly1RdXS2z2ayhQ4fq1FNP1YUXXqjU1NRO7wsAIPrIv53z0/zrdrv15JNP6u2339bmzZtlMBiUk5Oj4uJiXXTRRbJara2+zvbt2/XEE0/ok08+UVVVlSTp4IMP1kknnaRLL71U/fv3b/P9586dq+XLl2vv3r0aOHCgCgoKdOmll2ro0KGd3g8AQM9A/u2cn+bf3bt3a+7cufrwww9VVVWlvn37Kj8/XxdddJEKCgrafJ2NGzdqzpw5+vTTT7Vr1y6lpaXpiCOO0KRJk3TiiSe2+bw9e/bo73//uz744ANVV1fLbrfr6KOP1uWXX64jjzyy0/sBAIisRM2zTerq6jR//ny9++67qqiokMfj0YABA3Tsscfq0ksv1fDhwzv9Wj1tnHnr1q0qKipq972GDx+uhQsXdiouAEDokH8PLP9ecMEFWrFiRbuv/dprr8nhcLTbxuv16txzz9Xq1as1a9YsTZw4sUWbhoYGHXXUUWpoaGjzdXr37q0vvviixeN+v1///Oc/9dprr+mbb76Ry+XSoEGDdMopp2jatGlKS0trNz4g3ChEA4D9DB06VEcffXS7bVatWqWGhgYNGTKkw9d77bXXtHjx4ja3jxw5UhkZGW1ur6+vV1lZmSQpOzu72ba3335bN954ozwejywWi4YOHSqXy6Xy8nKtWbNGCxcu1NNPP63MzMwO4wQAIJq6k3+dTqcuuOACrV27VgaDIbi9KR++++67euqpp1oMmn/xxRe68sor5XQ6ZTKZNGTIEPn9fm3YsEHffvutFi5cqHnz5rUYlFi4cKFuvfVWNTQ0yGq16tBDD9Xu3bv14osv6tVXX9W9996r4uLiEPxVAAAIr+7k37Vr1+ryyy/Xzp07ZTAYdMghhygQCOjDDz/Uhx9+qIsvvlg333yzDAZDs+d98sknuuaaa1RXVyebzaa8vDzt3r1bH3zwgT744ANdeumluummm1rEsWvXLp133nnavHmzbDabDjvsMFVXV+v999/Xhx9+qD/96U86++yzu/9HAQAghHbt2qWLLrpI3377rSQpIyNDaWlp2rRpkxYuXKhFixbp7rvv1hlnnNHha/XEcea1a9dKkvr06aPc3NxW35ebtQAAkdad/Nt0A9YRRxwhk8nU6uunpKR0GENJSYlWr17dbpuKigo1NDTIZrO1WdjWq1evFo+5XC5deeWVWrZsmaTGXNu3b19t3rxZTzzxhN599109//zzXB9GVFGIBiCkTj31VB1xxBGyWCzRDuWATJs2TdOmTWtz+6uvvqovv/xSKSkpKikpafe1qqurdffdd7fb5qGHHmp3+y233KKysjIddthhuvXWW4OPb9myJTg4cOaZZ+q2225T7969JTVeeP/d736niooKXXfddXrhhRfafQ8AQOxL5Px7zz33aO3atUpPT9fs2bM1atQoSdKXX36pq6++WqtWrdI999yjP//5z8HnOJ1O/fa3v5XT6dTYsWM1c+ZMpaenS/oxxzY9f9GiRUpKSpIklZWVBYvQTj75ZM2cOVP9+vWT9GOB2g033KDMzMwOL+wDAGJfoubfpkHvnTt3aujQoXr44Yd12GGHSWrMlVdddZWeeuop9e/fX1OmTAk+b/fu3frd736nuro6TZgwQXfeeWfwPPaNN97QTTfdpCeeeEJHHnmkTjvttGaxXH/99dq8ebNOPPFEPfDAA0pLS5Pf79e8efN0//3364477tBRRx2lvLy8UP6JAABRFOt5VpJuvPFGffvtt8rOztZ9992nww8/XJK0b98+3XvvvXrxxRd16623yuFwBHNpa3rqOHNTIdovfvEL3Xnnne2+PwAgNiRy/q2qqlJNTY1sNpteeOEFGY3GA3r/8vLyDq8hSz/m0dGjR2vevHmdfv077rhDy5YtU3p6uh599NHg/q1bt07Tp0/Xxo0bdfvtt2vOnDkHFD8QCgf27QGANvTu3Vt5eXmdmi0s1mzYsEF/+tOfJEm33nprhwPcM2bMkNPplM1mO6D3e+ONN/TKK68oKSlJDzzwQLPXeeaZZ+TxeORwODRz5szg4IAkORwOPfzwwzKZTPrqq69anbIVABBfEjX/ejwevfXWW5IaBxiaitAk6eijj9bvf/97SY051ePxBLe98sor2r17t9LT0/Xggw8Gi9AkafDgwXr00UeVlpamrVu36p133glu+/vf/66GhgYddthheuihh4JFaJJ0xhln6JJLLlEgEAjGCwCIb4maf19++WVVVVUpOTlZ8+bNazZwn5+fHyz+nj17tnbs2NHseTU1NRo0aJDuueeeZuexv/zlL3XOOedIUouL3MuXL9eKFSuUkpKi++67L7jEiNFo1JQpU/TLX/5SDQ0N+vvf/x7ivwIAIJpiPc+Wl5dr6dKlMhqNuv/++4MXiaXG2U3uvPNOjR49Wg0NDXr66afbfa2eOs7cNGtMe0V0AIDYksj5t6kw7JBDDjngIjSPx6Mbb7xRPp9PVqu13bZN79eVPPr1119r4cKFMplMmjdvXrP9GzZsWLAw/OOPP1Z1dfUB7AEQGhSiAUAn3XbbbXK5XDrxxBM7XPJjwYIF+te//qVx48Y1uyjeWbt37w4O+l911VU65JBDmm1fvny5JGn8+PGtTg2bl5cXnA69o6lfAQDoydrLv3v37lVdXZ0ktVhCU1IwB9fV1Wn37t3Bx5vy6Mknn9xiyU5J6tevn4466ihJjUuSSZLP59PSpUslSRdeeGGrAwkXXXSRpMYBj6aBBAAAYlF7+be0tFSS9POf/1yDBw9u8dyxY8cqNzdXbre7WUH3oEGD9L//+786//zzW82jw4YNk9R4F/r+Xn31VUlSUVFRsyLwJuedd54k6YMPPggeFwAAEG1N551DhgxpdXzYYDDolFNOkfTjeWdrevI484FcQAcAIJy6k3+b8tqhhx56wO//0EMPaf369brgggs0YMCAdtseSB5tOj8+88wzg+fQ+xszZoyuu+463XbbbQdcTAeEAktzAjGqurpac+fO1YoVK7R161YFAgENHDhQJ5xwgi6++GIdfPDBrT7vww8/1EsvvaSysjLt3r1bffr00ejRo3X55Zdr5MiRrT7H5XLpiSee0KJFi7R161bZbDaNHDlSl156qU488cRmbV955RXdcsstysjI0Mcff9xsm9/v16uvvqqXXnopuC730Ucfrd/+9rcH9DdoLcG2ZdCgQfrwww8P6H0kadGiRfriiy9ksVh02223tdt2y5Yt+stf/qI+ffrozjvv1PXXX9/l9/vb3/4mp9Op7OxsXXrppS2233rrrdq6dauOOOKINl8jEAhIarxwDgAIDfJvz8q//fv3V1JSkurr67VmzZoWgwRNd2cnJSWpf//+wcevvPJKnXbaacrJyWnzvZvyqN/vlyTt2bNHLpdLktrss4MOOkh2u11Op1P/+c9/Wi2OAwB0Hfm3Z+XfpkKx/Pz8Nl8jJydHlZWV+s9//hN8bMKECZowYUKbz2m6uJ2dnd3s8a+++kqSdMwxx7T6vMMPP1xms1kul0urV6/W6NGj23wPAEBL5Nnw5NlTTjlF6enp7S5t9tPzzp/qyePM+/bt05YtWyR174I9ACQq8m/Py79NhWFdiWt/K1eu1BNPPKGhQ4fqhhtu0OLFi9ttfyCFaJ9++qmkxhvDWmMwGHTllVd2+vWAcKEQDYhBmzdv1m9+8xt9//33SklJCR6MbNy4Uc8++6xeffVVPfvssxoxYkTwOT6fT7fccosWLlwoSRowYIAOO+wwbdmyRW+//bbef/99zZ49W4WFhc3eq66uTueee67Wr1+vgQMHKicnRxs3btS//vUvLV26VLNmzdJZZ53VYcwej0fXX399MOkOGTJEqamp+vTTT/Xpp58e0N1cRx99dKfbdlR13h6Px6P/9//+nyTp17/+dfAOsNb4/X7dcsstcrlcuvvuu3XQQQd1+f3Wr1+vl156SZJ0ww03tHqn+JgxYzRmzJg2X+Obb74JHgT+9C43AMCBIf826kn512Qy6dxzz9Uzzzyj+++/X4ccckjwoviaNWuCz588eXKzwYfDDz+82bTlP7V7926tWLFC0o951GAwBLebzW2fRnm9XknSd99916n9BAC0j/zbqCfl36ac2N7AflfyodPp1DPPPKNXXnlFZrNZV1xxRXCb3+/X1q1bJanNpWEsFosyMjL03XffacOGDRSiAUAXkGcbhSPPDhkypMNlzZpmDm1t/LanjzOvW7dOgUBA6enp2rNnj5588kmtWbNGPp9PQ4cO1YQJE9osIgeAREf+bdTT8m/TTc0HH3ywXnzxRX322WfavXu3DjroIB1//PE644wz2lxus66uTjfddJMCgYBmzZql5OTkdmOorq7Wnj17ZDKZ1KtXL/3973/Xf/7zH9XV1enggw/Wqaee2qIv3W63Nm/eHIy9trZWr7/+upYtWyan06msrCyNHz9eY8eObfe9gUigEA2IQQ888IC+//57nXbaaZo1a5Z69eolSdq1a5euueYaffXVV7r//vv1+OOPB5/z+OOPa+HChbLZbLr77rtVXFwsg8Gg+vp6zZo1SwsWLNB1112nJUuWKC0tLfi8mpoaGQwGzZkzJ5jwdu/erauuukpfffWV7rvvPp155pnNLs625vHHH9fixYvVu3dvPfTQQzrhhBMkNSba3//+98GLvV2xYMGCLj/nQCxcuFBVVVUym8267LLL2m379NNP6/PPP9dpp52m4uLiA3q/uXPnyufzKScnp82K9vb4fL7gGuAZGRk6/vjjDygOAEBz5N9GPS3/3nTTTfL5fHrxxRd19tlna8iQITIYDNq0aZOsVqumTZuma6+9tkvvfffdd8vtdstms+m0006TJPXt21epqamqra1VeXl5q3d8b926NThrWk1NTZfeEwDQOvJvo56UfwcPHqyKigqVl5e3uj0QCAQvWLeXD9999109/PDD2rRpkzwejwYOHKg77rhDxx57bLBNTU1NsKittWU5m/Tp00ffffed9uzZ0+E+AgB+RJ5tFKk8u79//OMfwSXBzjzzzBbbe/o4c9MsLk6nUxMmTGg2W9rSpUv13HPP6Ve/+pXuvPPOdovXASARkX8b9aT863K5gkVeN954o/bt29fseW+99ZbmzZun2bNnKy8vr8Xr3nfffdq4caMuvfTSThXYNeVRg8GgX/7yl6qvr2+2/aWXXtJJJ52k+++/X6mpqZKkbdu2BWdx2759uy644ILgjOVN/vnPf6q4uFj33ntvm0VzQCSwMCwQg5qS0+mnnx48OJEal4O69dZbNXbs2GZV3B6PR3PmzJHUmDwnTJgQPKBISkrS7bffrpycHLlcLr399tst3u+2225rVnXdr18/3XjjjZIaD4o2btzYbrwNDQ3Bg6Vbb701eHAiNZ7APvLII+rTp08X/gKR9cwzz0hqXEZk0KBBbbarqKjQAw88oH79+umOO+44oPeqrq4O9sHll1/e5fW7A4GA/u///k+ff/65pMaL8xxoAEBokH8jq7P5V5Jyc3OVnp4uv9+vjRs3asOGDfL7/erVq5dSU1O7tEz17Nmz9eabb0qSrrrqquCSnkajUSeddJIkad68efJ4PC2eW1JSEvx3Q0NDp98TANA28m9kdSb/nnLKKZKkN998U5s2bWqx/Y033gjOhNZePvz666/1zTffBHNqTU2NPvzwQ9XW1gbb1NXVBf/d3rltUlJSi/YAgI6RZ6Pj008/1V133SVJGjt2bPBcs0ksjDM3fXbq6+t1zjnn6K233tKqVav00Ucf6brrrpPFYtE///lP3X333QcUPwDEM/JvdLSXf9evXx8s8hoyZIjmzp2rL7/8Uv/+9781e/ZsDR06VBs3btRll13W4gao5cuXa/78+crNzdV1113XqViaZl/zer06+eST9c9//lNff/21li5dqttvv129evXSkiVLmi3LvX9x3G9/+1sZDAY9+uijWrlypZYtW6bbb79dycnJWrRoEfkXUceMaEAMys7OVmVlpe677z5J0v/8z/8Ep/gcNWqU5s2b16z9F198oR9++EEWi0UTJ05s8XpGo1Fz5syRxWJRZmZmi23jxo1r8Zz918fevXu3cnJy2oy36f2TkpI0YcKEFtvT0tJUXFys559/vp29jo5PP/1U69evl6R2Z2Px+Xy6+eabVV9fr7/85S/t3qndnueff14NDQ0aMGCATj/99C491+fz6fbbb9fLL78sSbrgggta/XsDAA4M+TdyOpt/vV6vrr76ai1ZskSDBw/W7Nmzdfzxx8vv9+vjjz/Wvffeq/vuu0///ve/9eijj8pkMrX7vo888ogefvhhSY0X2fdfGkxqLEz74IMPtG7dOl188cW66aab5HA49P333+uZZ57RSy+9pL59+2rPnj3tLt8JAOg88m/kdDb/nnnmmXrmmWf07bff6sILL9Rtt92mE088UV6vV++8845mzZrVqXx4wQUX6Oqrr1Ztba2WLl2qv/zlL3rxxRdVVlamF198UWazudlF8/bu0A8EApLU5YvsAJDoyLORV1paqunTp8vj8ejggw/WX/7yl2bbY2WcefTo0QoEAnI4HDr//PODj2dlZenKK6/UoEGD9Ic//EEvvPCCJk2a1Oqs4gCQqMi/kddR/u3du7cuueQS/fDDD7rttttks9mC24qKinTUUUfp9NNP17Zt2zRv3jz94Q9/kCTV1tbqlltukdFo1KxZs4I3SXVk2LBhOu+883TQQQfpmmuuCT6elJSkSZMmadiwYZo8ebI+/vhjlZaWqrCwsNmsaR6PRy+//HLwBjKbzaZJkyYpOTlZM2bM0D/+8Q9ddNFFys3NPeC/GdAdXB0BYtC1116r5cuXa8OGDbr66qtltVp11FFH6cQTT1RhYaGGDx/erH3THco5OTltrknd1nrZdru9WbJtsn+F/k+nC/2pDRs2SGo8sGrrDmaHw9Hua7TmvPPO63TbAQMG6KGHHuryeyxatEhSY3z7H5T91GOPPaavv/5a48eP1y9+8Ysuv0+TpjsViouLuzSTmcvl0u9+9zt9+OGHkqSJEydqxowZBxwHAKAl8m+jnpR/X331VS1ZskQpKSl68sknNXjw4OC24uJijRo1SmeeeaY++ugjLVy4sNWBGqmxoO1Pf/qTXnzxRUmNgz8PPvhgiwveeXl5euSRR3Tttdfq3//+t379618Ht5lMJk2fPl3ffPON3n777eCU6QCA7iH/NupJ+TcpKUklJSWaMmWKKisrmw2aS42D9Mcee6zuueeedvNh0wWSlJQUnXXWWTriiCN05plnavXq1Xr99dc1ceLEZn/71mYj/em2zg76AwAakWcbRSLPStLLL7+sO+64Qw0NDRo0aJCeeuqpFoVmsTLOfPrpp7db4Hb66afr0Ucf1caNG/XBBx9QiAYA+yH/NupJ+TcvL08333xzm6/Rr18/TZ48WQ888IAWL14cLESbNWuWvvvuO11++eU68sgjOx1TYWFhs1nqfmr06NE64YQTtHTpUi1evFiFhYXN+n7ixImtzmI+ceJEPfroo/ruu+/00UcfUYiGqKEQDYhBDodDr7/+uh577DG9//772rt3r5YvX67ly5frr3/9qw477DD93//9n0aPHi1J2rt3r6TGwd2uCsUgrtPp7PD97XZ7l1/3yy+/7HTbjpb0ao3f7w+ecBcXF7fZbu3atZo9e7b69++v22+/vcvv02T9+vXBg8n23u+nqqurNW3aNK1Zs0aSdPHFF+vmm2/ucD13AEDXkH8b9ZT8K0nvvPOOJOmMM85oVoTWZPDgwZo4caKeeeYZvfnmm60WotXW1mr69OlaunRp8D3vvffeNgdV/ud//kfvvvuuXnjhBa1atUper1eHHHKIfvWrX+mwww7TBRdcIKlxWnoAQPeRfxv1pPwrNebYhQsX6tVXX9XSpUvldDo1cOBAFRcXa+zYscEZRruSD3Nzc3XqqafqzTff1IoVKzRx4kSlpKTIarXK4/G0WP5kf03bmpbUBgB0Dnm2UbjzbCAQ0F//+tfgsmqHHXaY5s2b1yJPxts4s8Ph0MaNG7V169YDej4AxCvyb6Oekn87q6nYrimvlZaW6uWXX1ZeXp6uvfbaA3rNjt5v6dKlwffb/2/cVuGfwWDQIYccou+++05btmwJeUxAZ1GIBsSowYMH689//rP+9Kc/afXq1VqxYoU+++wzLV++XOvXr9fll1+ut99+WwMHDgxWuu+/dnQkNa0LXltb22aburq6Lr9u0/rZ4fLVV1/p+++/lySNHz++zXbvv/++Ghoa9P333+v4449vs90jjzyiRx55RIMGDQoO8O/vgw8+kNQ4ffkRRxzRqRjXr1+vK664Qtu3b5fRaNQtt9yiCy+8sFPPBQB0Hfm35+RfSaqqqpKkdu/sOuSQQySp1YHv7du364orrmi2DNkf/vCHDgfZfzplehO/36+1a9dKahzYAACEBvm3Z+XfJlarVeeee67OPffcFtvKysokNc+He/fu1datW5WVldXmMmNNFxd27twpqXEZmZycHK1bt67Ni9gNDQ3asWOHJGno0KGdih0A8CPybHjzrMfj0Y033hicoez444/Xww8/rN69e7doG2vjzA0NDTIajTKZTK1u9/v9ktTuUt0AkKjIvz0n/zYJBAJqaGho8wblQCAg6ce81vTaFRUVGjVqVJuve8stt+iWW27Rcccdp2effTb4uM/nUyAQaDNP/jSPDho0SMnJyaqrq2t3xvCmvNyVGVGBUDNGOwAAXRMIBLR169bgrB1Go1GHH364Lr/8cj3++ON64403lJqaKrfbrffee0+Sgut6b9q0qc3pVRcsWKCLL75Yjz/+eMhj3v/9XS5Xq22+/fbbkL9vd/373/+W1Hgw2NosK00GDhyoo48+us3/mpYiaWo3cuTIdt/v+OOP79RdZt9++60uvPBCbd++XcnJyXr44YcpQgOAMCH/Rk5n86+kYI5tuljdmqaL6j9dGmzHjh264IILtH79eplMJt1xxx268cYb283BpaWlmjdvnlatWtXq9hUrVsjpdMpms+moo45qN3YAQMfIv5HTlfxbXl6up59+Ojgz6U/t27dPy5Ytk6RmF9HPPvts/epXv9Irr7zS5mt/9913kprPpNZ0AX3lypWtPufrr7+W1+tVUlKSRowY0W7sAIAfkWfDz+v16tprrw1eqD7rrLM0d+7cNi+Cx8o4c01NjY477jiNHDkyWPTWmvLyckk/3iAGACD/RkJX868k/f73v9fIkSM1ffr0Nts03XCVl5cnqfFGqPbydlMhWFO7/W/UOuWUU5Sfn9+sMO2nmmYobcqjJpMpmPv/85//tPm8pqVU21quFYgECtGAGLN3716ddtppuvTSS1u9CJqTk6OsrCxJP1ZKH3PMMUpJSZHH49Ebb7zR4jl+v18vv/yyPvvsszYPILpj9OjR6t+/vxoaGvTSSy+12O52u/Xmm2+G/H27a/Xq1ZLU4ZreZ599thYsWNDmf00D4b/61a+0YMGCNtcwb3q/zly4rqmp0RVXXKE9e/aod+/eevLJJzVu3Lgu7B0AoCvIv5HT2fwrSQUFBZKkN954o9W/4f5/+6a2TY9PmzZNmzdvlsVi0d/+9jedd955Hb7fu+++q//3//6fnnrqqRbbAoGASkpKJEnnnHOOkpOTO3w9AED7yL+R05X8u27dOs2cOVP33nuvvF5vi+1PPvmk3G63HA6Hjj322ODjJ554oiTppZdeUkNDQ4vnbd26VYsXL5bUOCjfpGmGtnfffTe4JM3+FixYIKlx6THyLwB0Hnk2/GbNmhWcseyyyy7TPffcI4vF0mb7WBlnTktL00EHHSRJbRaYv/POO8Fz7lNPPbXDOAAgUZB/w6+r+VeShg0bJq/Xq2XLlmnbtm0ttjudTr344ouSpAkTJkiSpk2b1m7eHjBggCRp6tSpWrBggf74xz8GXy8vL0+BQECvv/56q+fVX3/9tZYvXy6p+TLbv/zlLyU15tnW4iwtLdWGDRtkNBrJv4gqCtGAGNO3b1+NHTtWkjRjxgxVVFQEt/n9fj333HNav369DAZDsF1qaqouvvhiSc2Tr9Q4Verdd9+t1atXKzU1tdUlNbrLZDIF18a+//779dZbbwW37dmzR9ddd12ryTLamirb8/Pzw/5eVVVV2rNnjyR16g7ue++9V1VVVTIajXrggQd09NFHhztEAEho5N/I6Ur+vfDCC5WWlqZt27bpqquuCi7VKTXOhDZ9+nRVVlYqLS0t2BeSNHfu3OD7/N///V+nT8onTpwoSXrrrbf02muvBR+vra3Vrbfeqs8++0x9+vTRtGnTOvV6AID2kX8jpyv5d9y4cUpLS1NVVZXuvvvu4JIgPp9Pzz33nGbPni2DwaDf//73zWZhufzyy5WcnKyNGzfqd7/7nXbv3h3ctmbNGl122WWqq6vTscceq6KiouC2448/Xsccc4x++OEHXX311dq1a5ekxs/A3Llz9cYbb8hiseiKK64Iyd8CABIFeTa8vvjiC82fP19S40XjG2+8MSLvG6lx5ilTpkiSPvroI91///3Nlgh75513dMstt0hqzP/7z3QKAImO/BteB5p/zznnHPXt21dut1u//e1vtWnTpuC2LVu2aMqUKaqurtbQoUN1/vnndzvOK664QgaDQWvWrNFtt93WbNnT5cuX66qrrlIgENDpp5/ebNnPiRMn6tBDD5XL5dIVV1zRbCa61atX6/bbb5ck/frXvyb/IqpYmB2IQX/605907rnnav369frf//1fHXzwwerdu3ezk8wbbrih2ZTXV199tTZs2KC3335bV155pQYOHKh+/fpp48aN2rdvn5KTk/XXv/5V6enpYYm5Kd758+frhhtu0H333ad+/frpm2++kcfj0bhx44J3PvcUO3bskKTgnQfhVF1dHfx3R++3Y8cOLVy4UJKUnJys2bNna/bs2W22/9WvfqWzzz47NIECQAIj/0ZGV/LvgAEDNHv2bF199dX67LPPVFRUpLy8PJnNZn377bdqaGhQnz599Oijjwb/xh6PR08//bQkyWw265VXXml3ibDCwsJgYdno0aN16aWX6oknntBNN92kBx98UP369VNlZaXcbrf69OmjJ598Uv379+/unwEA8F/k38joSv5NTU3VzJkzde211+r555/XW2+9pYMPPljbtm3T7t27ZTQadffdd+t//ud/mj1v8ODBevDBB3X99dfr3Xff1UcffaScnBzV19dr48aNkhpnZHvooYeaFbAZDAbde++9mjRpkr744gudfPLJOvTQQ7Vjxw7t3LlTBoNBM2fODC6PAgDoPPJs+MydOzf474qKinZn4R4wYECbs5t1VaTGmc8880ytW7dOTzzxhObMmaPnnntOQ4cO1a5du4IxnHPOOe0ucQYAiYr8Gz4Hmn/79OmjRx55RFdeeaVWrVql8ePHKzs7OzjO7Pf7NXjwYM2bN082m63bcR533HGaMWOG7rnnHr366qt6++23lZOTox9++EFbt26V1Dgu/ec//7nZ86xWq/7+97/rsssu0zfffKP//d//VW5urgwGQ7Ao7fjjj9dNN93U7RiB7qAQDYhB6enpevnll/X444/rk08+0ZYtW7Rt2zb1799fEyZM0OTJk1vcuWQ2m/XAAw/o5z//uV5++WWVlZVp3bp16t+/v0477TRNmTIluMZ3uPzxj3/U8ccfr2effVZr167V3r17NWrUKF111VXatWtXjzhAaVJbWxu8i2vgwIFhf7+mO8GTk5PVt2/fdtt+9dVXwWlaXS6Xvvzyy3bbn3DCCaEJEgASHPk3/A4k/44ePVpvvPGGnnzySZWWlmrLli2SpCFDhqiwsFCXXHJJswGY9evXq6amRpLk9Xo7zKPZ2dnN/v+mm27SEUccoeeee05r1qzRrl27lJmZqZNOOklXXHEFd5oBQIiRf8PvQPLvuHHj9OKLL2rOnDn64osvtHbtWvXt21fjx4/XpZdeqsMPP7zV55188slauHChHn/8cf3rX/9SZWWlkpOTdcwxx+j000/Xr371q1aXTBk8eLBee+01lZSU6MMPP9T69etls9k0duxYXX755c2W4AYAdB55NnxWrFgR/PeaNWvabTto0KCQvW8kx5lvuukmjR07VvPnz9fKlSu1bt06paWl6eSTT9ZvfvMbnXTSSQe+IwAQx8i/4dOd/Dt69Gi9+eabeuKJJ7RkyRJt3bpVZrNZw4cP12mnnaaLLrooJEVoTS688EIdeeSRevrpp/X555/r22+/Va9evVRQUKCJEyfq9NNPb3aTVpPBgwdr4cKFevrpp/XOO+9o06ZNMplMOuKII3TmmWfq17/+tcxmyoAQXYZAIBCIdhAAAAAAAAAAAAAAAAAAgNhljHYAAAAAAAAAAAAAAAAAAIDYRiEaAAAAAAAAAAAAAAAAAKBbKEQDAAAAAAAAAAAAAAAAAHQLhWgAAAAAAAAAAAAAAAAAgG6hEA0AAAAAAAAAAAAAAAAA0C0UogEAAAAAAAAAAAAAAAAAusUc7QBi3YYNG1RXV6fk5GTl5OREOxwAABIGORgAgMgj/wIAEHnkXwAAooMcDABA11GI1k11dXVyuVwhez2fz6eVK1dKko488kiZTKaQvTaih36NT/Rr/KFPY0soczB9H5/o1/hEv8Yn+jV2cA6MjtCn8Yl+jU/0a+wg/6Iz6Nf4Q5/GJ/o1tjAGjY7Qr/GJfo1P9GvksDQnAAAAAAAAAAAAAAAAAKBbKEQDAAAAAAAAAAAAAAAAAHQLhWgAAAAAAAAAAAAAAAAAgG6hEA0AAAAAAAAAAAAAAAAA0C0UogEAAAAAAAAAAAAAAAAAuoVCNAAAAAAAAAAAAAAAAABAt1CIBgAAAAAAAAAAAAAAAADoFgrRAAAAAAAAAAAAAAAAAADdQiEaAAAAAAAAAAAAAAAAAKBbKEQDAAAAAAAAAAAAAAAAAHQLhWgAAAAAAAAAAAAAAAAAgG6hEA0AAAAAAAAAAAAAAAAA0C0UogEAAAAAAAAAAAAAAAAAuoVCNAAAAAAAAAAAAAAAAABAt1CIBgAAAAAAAAAAAAAAAADoFgrRAAAAAAAAAAAAAAAAAADdQiEaAAAAAAAAAAAAAAAAAKBbKEQDAAAAAAAAAAAAAAAAAHQLhWgAAAAAAAAAAAAAAAAAgG4xRzuAjpxyyin67rvvOmx33HHH6dlnnw3+/6effqq5c+dq7dq1qqurU25urn7zm9/o7LPPlsFgCGfIAAAAAAAAAAAAAAAAAJBQenwh2rhx47R79+5WtwUCAb3zzjvyer3Kz88PPr5gwQLdcccdslgsGjNmjCwWi5YtW6bbbrtNX375pWbNmhWp8AEAAAAAABKKzWaTyWSKdhgAAAAAAAAAIqzHF6LNmDGjzW2PPvqovF6vjj32WP3+97+XJG3YsEF33XWXUlNT9eyzz2rEiBGSpKqqKl100UV65ZVXVFhYqF/84hcRiR8AAAAAACAReH1+eXwBpQ3MVo3Lo521HtltFllNRplNxmiHF1Ier08NvoCc7gbtcTWob4pFdptFFpNBVjNFeAAAAAAAAEhMPb4QrS3Lly/XI488Irvdrvvvv19mc+OuzJs3Tz6fT5dddlmwCE2SsrKydPvtt+vyyy/XvHnzKEQDAAAAAAAIEZfHq8Xl1XqstFJlVc7g4/lZdk0tzNU4R4ZSrDE7DNXMvnqv3l9TrbmftNzXK8bm6tQRGeqVFB/7CgAAAAAAAHRFTN6O6vF4dPvtt8vv9+vGG29URkZGcNtHH30kSfr5z3/e4nknnHCCevfurVWrVqm6ujpi8QIAAAAAAMQrl8ermYvKNX3BymaFWZJUVuXU9AUrNXPRWrk83ihFGDqueq/ufqtc173Y+r5e9+JKzVxUrn31sb+vAAAAAAAAQFfFZCHaU089pY0bN2rUqFE6++yzg4/v2rVL33//vSwWi3Jzc1s8z2QyBR9ft25dxOIFAAAAAACIR16fX4vLqzV/2eZ2281ftkkflO+Q1+ePUGSh5/H69N6aaj2/ov19fW75Zi1eUy2P1xehyAAAAAAAAICeIebWCaitrdWcOXMkSdOnT5fBYAhu27FjhyTpoIMOktHYeo1denp6s7ahEggE5PN1f4Bx/9cIxeuhZ6Bf4xP9Gn/o09AwmUwRfb9Q5GD6Pj7Rr/GJfo1P9Gv3xWL+lej7eODxBVSypLJTbUtKK1TkSJdBgTBHFR4NvoDmfNy5fZ3zSaVOHZEhkyE+Ptd8V+MT/dp95F/0JPRr/KFP4xP9GhqxmIPp+/hEv8Yn+jU+0a/d19n8G3OFaC+88IJ++OEH5efn62c/+1mzbS6XS5KUnJzc5vOTkpKatQ0Vt9utlStXhvQ1V61aFdLXQ89Av8Yn+jX+0KcH7phjjono+4U6B9P38Yl+jU/0a3yiXw9MrOdfib6PRTabTWkDs7Vmm7PjxmpcunLPvnrVbNskt9sd5uhCq0+fPkrpn9Wlfa1xN8j1fZX27t0b3uAijO9qfKJfDwz5Fz0V/Rp/6NP4RL8euFjPwfR9fKJf4xP9Gp/o1wPT2fwbU0tz+nw+PfPMM5KkKVOmtNjeNAva/rOktSUQiM27bwEAAAAAAHoCk8mkGpenS89xuhoiPntBKFgsFu3p4r7udTfIYrGEKSIAAAAAAACg54mpGdFWrFih6upqpaWl6ZRTTmmxvVevXpKkurq6Nl+jvr5ekpSSkhLS2Gw2m4YNG9bt1/H5fMHqy1GjRsXk4Cxaol/jE/0af+jT2BSKHEzfxyf6NT7Rr/GJfo09nAOjyc7arhVn9U1N0oDMQ8IUTXjt+KFr+9onxaL01EEaNGhQmCKKHL6r8Yl+jT3kX7SHfo0/9Gl8ol9jE2PQaAv9Gp/o1/hEv0ZOTBWivfvuu5Kk0047TVartcX2jIwMSdKuXbsUCARanRltx44dkqT09PSQxmYwGEL+QTWZTHz44xD9Gp/o1/hDn8aOUOdg+j4+0a/xiX6NT/RrbOAcGE3sNovys+wqq+p4ycr8LLvsNkvM9nOX9zU5dve1PXxX4xP9GhvIv+gs+jX+0KfxiX6NHYxBozPo1/hEv8Yn+jW8YmppztLSUknSL37xi1a39+nTRxkZGfJ4PNq0aVOL7T6fT5WVlZIUkjvHAAAAAAAAEpnVZNTUwtxOtZ1WmCerKaaGopqxmAy6Ymzn9nXK2FxZTC1vkAQAAAAAAADiWcyM/u3cuVNVVVUym8066qij2mxXWFgoSXrvvfdabFu6dKl++OEHDR8+XJmZmWGLFQAAAAAAIBGYTUaNc2RocsGQdttNLshWkSNd5hguRLOaTTp1RIbOP679fZ00ZojGjciQ1cydtQAAAAAAAEgsMTP69/XXX0uSDjvsMKWkpLTZbtKkSTKZTHrssce0cuXK4ONVVVW66667JElTp04Na6wAAAAAAACJIsVq1oxihx4+7yjlZ9mbbcvPsuvh847SjOLhSrGaoxRh6PRKMuvWCQ797dwjW93Xv517pGYUO9QrKfb3FQAAAAAAAOiqmBkV27JliyRp8ODB7bYbPny4rrvuOt1///06//zzddxxxyk5OVnLly+Xy+XSOeeco+Li4kiEDAAAAAAAkBBSrGaNH5mpIke69uyrl9PVoL6pSbLbLLKajDE9E9pP9Uoya/yoTJ06IkM1dQ3a62pQnxSL7MkWWUwGZkIDAAAAAABAwoqZQrQ9e/ZIkgYOHNhh2ylTpigvL09PPfWUvv76axkMBuXl5em8887TWWedFe5QAQAAAAAAEo7ZZJRBAdVs2ySTyaQBmYfIZIrPoiyr2SSrWUpJMmtgmi3a4QAAAAAAAAA9QswUol1//fW6/vrrO92+qKhIRUVFYYwIAAAAAAAAP+V2u6MdAgAAAAAAAIAoiJ91EQAAAAAAAAAAAAAAAAAAUUEhGgAAAAAAAAAAAAAAAACgW2JmaU4AAAAAAAAA0WGz2WQymaIdBgAAAAAAAHowZkQDAAAAAAAA0Cqvz696X0BpA7PlS03XzlqPXB6vvD5/tEMDAAAAAABAD8OMaAAAAAAAAABacHm8WlxercdKK1VW5Qw+np9l19TCXI1zZCjFyvAiAAAAAAAAGjEjGgAAAAAAAIBmXB6vZi4q1/QFK5sVoUlSWZVT0xes1MxFa+XyeKMUIQAAAAAAAHoaCtEAAAAAAAAABHl9fi0ur9b8ZZvbbTd/2SZ9UL6DZToBAAAAAAAgiUI0AAAAAAAAAPvx+PwqWVLZqbYlpRXyUIgGAAAAAAAAUYgGAAAAAAAAYD9Ot1drtjk7bqjGZTqdbpbnBAAAAAAAAIVoAAAAAAAAAPZT4/Z0qb2zriFMkQAAAAAAACCWUIgGAAAAAAAAICjNZu1Se3uyJUyRAAAAAAAAIJZQiAYAAAAAAICQsdlsSk1NjXYY6Aa7zaz8LHun2uZn2WW3mcMcEQAAAAAAAGIBhWgAAAAAAADoNq/Pr3pfQGkDs+VLTdfOWo9cHq+8Pn+0Q0MXWU1GTS3M7VTbaYV5spoYYgQAAAAAAIDE7YoAAAAAAADoFpfHq8Xl1XqstFJlVc7g4/lZdk0tzNU4R4ZSrAxDxQqzyahxjgxNLhii+cs2t9luckG2ihzpMlOIBgAAAAAAAFGIBgAAAAAAgG5webyauai81YKlsiqnpi9YqckF2ZpRPJxitBiSYjVrRrFDY3L6q6S0okWB4bTCPBU50ulTAAAAAAAABDFSBAAAAAAAgAPi9fm1uLy63VmzJGn+sk0ak9NP40dmMntWDEmxmjV+ZKaKHOnas69eTleD+qYmyW6zyGoy0pcAAAAAAABohtEiAAAAAAAAHBCPz6+SJZWdaltSWiGPzx/miBBqZpNRSSaDarZtkrG2WgNSrUqxmilCAwAAAAAAQAvMiAYAAAAAAIAD4nR7tWabs+OGalym0+n2spRjjHK73dEOAQAAAAAAAD0cty4CAAAAAADggNS4PV1q76xrCFMkAAAAAAAAAKKNQjQAAAAAAAAckDSbtUvt7cmWMEUCAAAAAAAAINooRAMAAAAAAMABsdvMys+yd6ptfpZddhvLcgIAAAAAAADxikI0AAAAAAAAHBCryaiphbmdajutME9WE0NRAAAAAAAAQLxi9A8AAAAAAAAHxGwyapwjQ5MLhrTbbnJBtooc6TJTiAYAAAAAAADELdZDAAAAAAAAwAFLsZo1o9ihMTn9VVJaobIqZ3BbfpZd0wrzVORIV4qVYSgAAAAAAAAgnjECCAAAAAAAgG5JsZo1fmSmihzp2rOvXk5Xg/qmJslus8hqMjITGgAAAAAAAJAAKEQDAAAAAABAt5lNRhkUUM22TTKZTBqQeYhMJlO0wwIAAAAAAAAQIRSiAQAAAAAAIGTcbne0QwAAAAAAAAAQBayLAAAAAAAAAAAAAAAAAADoFgrRAAAAAAAAAAAAAAAAAADdwtKcAAAAkmw2m0wmU7TDAAAAAHokjpcBAIg88i8AAABiDTOiAQCAhOb1+VXvCyhtYLZ8qenaWeuRy+OV1+ePdmgAAABA1HG8DABA5JF/AQAAEKuYEQ0AACQsl8erxeXVeqy0UmVVzuDj+Vl2TS3M1ThHhlKsHC4BAAAgMXG8DABA5JF/AQAAEMuYEQ0AACQkl8ermYvKNX3BymaDepJUVuXU9AUrNXPRWrk83ihFCAAAAEQPx8sAAEQe+RcAAACxjkI0AACQcLw+vxaXV2v+ss3ttpu/bJM+KN/BsgcAAABIKBwvAwAQeeRfAAAAxAMK0QAAQMLx+PwqWVLZqbYlpRXyMLAHAACABMLxMgAAkUf+BQAAQDygEA0AACQcp9urNducHTdU47IHTjfLHQAAACBxcLwMAEDkkX8BAAAQDyhEAwAACafG7elSe2ddQ5giAQAAAHoejpcBAIg88i8AAADiAYVoAAAg4aTZrF1qb0+2hCkSAAAAoOfheBkAgMgj/wIAACAeUIgGAAASjt1mVn6WvVNt87PsstvMYY4IAAAA6Dk4XgYAIPLIvwAAAIgHFKIhKrw+v1wer7bX1Gnddqe219TJ5fHK6/NHOzQAQAKwmoyaWpjbqbbTCvNkNXHIBAAAgMTB8TIAAJGXqPmX60UAAADxhdslEHEuj1eLy6v1WGmlyqqcwcfzs+yaWpircY4MpVj5aAIAwsdsMmqcI0OTC4Zo/rLNbbabXJCtIke6zHEysAcAAAB0BsfLAABEXiLmX64XAQAAxB+O3hBRLo9XMxeVt3oSVVbl1PQFKzW5IFsziodzcgEACKsUq1kzih0ak9NfJaUVLQa7phXmqciRTj4CAABAQuJ4GQCAyEuk/Mv1IgAAgPjEkRsixuvza3F5dbt38kjS/GWbNCann8aPzIyLO3oAAD1XitWs8SMzVeRI15599XK6GtQ3NUl2m0VWk5E8BAAAgITG8TIAAJGXCPmX60UAAADxi6M2RIzH51fJkspOtS0prZDH5w9zRAAANC57kGQyqGbbJhlrqzUg1aoUq5nBLQAAAEAcLwMAEA3xnn+5XgQAABC/mBENEeN0e7Vmm7Pjhmqcdtnp9jLdMgAgYtxud7RDAAAAAHosjpcBAIi8eM2/XC8CAACIX/Fx6wRiQo3b06X2zrqGMEUCAAAAAAAAAACAaOB6EQAAQPyiEA0Rk2azdqm9PdkSpkgAAAAAAAAAAAAQDVwvAgAAiF8UoiFi7Daz8rPsnWqbn2WX3cY0ywAAAAAAAD2BzWZTampqtMMAAABxgOtFAAAA8YtCNESM1WTU1MLcTrWdVpgnq4mPJwAAAAAAQDR5fX7V+wJKG5gtX2q6dtZ65PJ45fX5ox0aAACIUVwvAgAAiF/cQoCIMZuMGufI0OSCIZq/bHOb7SYXZKvIkS4zJxYAAAAAAABR4/J4tbi8Wo+VVqqsyhl8PD/LrqmFuRrnyFCKleFFAADQNVwvAgAAiF+MFCGiUqxmzSh2aExOf5WUVrQYxJxWmKciRzqDmAAAAAAAAFHk8ng1c1F5qxeHy6qcmr5gpSYXZGtG8XDGcQAAQJdxvQgAACA+cfSGiEuxmjV+ZKaKHOlyur1y1jXInmyR3WaW1WTkzhYAAAAAAIAo8vr8Wlxe3e4MJZI0f9kmjcnpp/EjMxnPAQAAXcb1IgAAgPhDIRqiwvzfE4gUq1mZacnRDgcAAAAAAAD/5fH5VbKkslNtS0orWDILAAAcMK4XAQAAxBdGiAAAAAAAAAAEOd1erdnm7LihGpfpdLq9YY4IAAAAAAAAsYBCNAAAAAAAAABBNW5Pl9o76xrCFAkAAAAAAABiCYVoAAAAAAAAAILSbNYutbcnW8IUCQAAAAAAAGIJhWgAAAAAAAAAguw2s/Kz7J1qm59ll91mDnNEAAAAQOyz2WxKTU2NdhgAAIQVhWgAAAAAAABAF3h9frk8Xm2vqdO67U5tr6mTy+OV1+ePdmghYTUZNbUwt1NtpxXmyWpiiBEAAByYeD+uAqTGz3m9L6C0gdnypaZrZ62HzzkAIG5xuyIAAAAAAADQSS6PV4vLq/VYaaXKqpzBx/Oz7JpamKtxjgylWGN7yM1sMmqcI0OTC4Zo/rLNbbabXJCtIke6zBSiAQCAA5AIx1UAn3MAQKIhqwEAAAAAAACd4PJ4NXNReavFWWVVTk1fsFKTC7I1o3h4zF9MSrGaNaPYoTE5/VVSWtHiotm0wjwVOdJjfj8BAEB0JNJxFRIXn3MAQCIiowEAAAAAAAAd8Pr8Wlxe3e4MYZI0f9kmjcnpp/EjM2N+prAUq1njR2aqyJGuPfvq5XQ1qG9qkuw2i6wmY8zvHwAAiI5EPK5C4uFzDgBIVGQzAAAAAAAAoAMen18lSyo71baktEIenz/MEUWG2WRUksmgmm2bZKyt1oBUq1KsZi6SAQCAA5aox1VILHzOAQCJihEjAAAAAAAAoANOt1drtjk7bqjGZXacbm+YI4ost9ut2traaIcBAADiQKIfVyEx8DkHACQqCtEAAAAAAACADtS4PV1q76xrCFMkAAAAsY3jKiQCPucAgERFIRoAAAAAAADQgTSbtUvt7cmWMEUCAAAQ2ziuQiLgcw4ASFQUogEAAAAAAAAdsNvMys+yd6ptfpZddps5zBEBAADEJo6rkAj4nAMAEhWFaAAAAAAAAEAHrCajphbmdqrttMI8WU0MuwEAALSG4yokAj7nAIBERUYDAAAAAAAAOmA2GTXOkaHJBUPabTe5IFtFjnSZuZAEAADQKo6rkAj4nAMAEhVzfAIAAAAAAACdkGI1a0axQ2Ny+quktEJlVc7gtvwsu6YV5qnIka4UK0NuAAAA7eG4ComAzzkAIBGR1QAAAAAAAIBOSrGaNX5kpooc6XK6vXLWNciebJHdZpbVZGQmAwAAgE7iuAqJYP/P+Z599XK6GtQ3NUl2m4XPOQAgLlGIBgAAAAAAAHSB+b8XjFKsZmWmJUc7HAAAgJjFcRUSgdlklEEB1WzbJJPJpAGZh8hkMkU7LAAAwoJCNAAAAAAAAAAAAAAAwsjtdkc7BAAAwo65PgEAAAAAAAAAAAAAAAAA3RIzM6Lt3r1bc+fO1YcffqiqqiolJyfr8MMP1+WXX67jjz++RftPP/1Uc+fO1dq1a1VXV6fc3Fz95je/0dlnny2DwRCFPQAAAAAAAAAAAAAAAACA+BQTM6JVVlbqjDPO0BNPPKGGhgYVFhZq0KBB+te//qVLLrlE7733XrP2CxYs0CWXXKLPP/9cI0aM0JgxY1RRUaHbbrtNM2bMiNJeAAAAAAAAAAAAAAASUZ8+fTRgwIBohwEAQFj1+BnRvF6vbrjhBu3YsUMXXnihbr75ZplMJknSa6+9pptuukk333yzCgsLlZSUpA0bNuiuu+5Samqqnn32WY0YMUKSVFVVpYsuukivvPKKCgsL9Ytf/CKauwUAAAAAAAAAAAAAiHMer08NvoBS+mdpj8ujHT94ZLdZZDEZZDWboh0eAAAh1eNnRHv//fdVXl6uY445RjNmzAgWoUnSmWeeqZ/97Gfq16+fysvLJUnz5s2Tz+fTZZddFixCk6SsrCzdfvvtwTYAAAAAAAAAAAAAAITLvnqvFq3arl8/9pmOv+dDFT/0Lx1/z4f69WOfadGq7dpX7412iAAAhFSPnxHt7bffliRddtllMhgMLbbPnTu32f9/9NFHkqSf//znLdqecMIJ6t27t1atWqXq6mplZGSEIWIAAAAAAAAAAAAAQCJz1Xt191vlen7F5hbbyqqcuu7FlZo0ZohmFDvUK6nHX7YHAKBTenxGW716tSTpqKOO0t69e7Vo0SKtXbtWZrNZo0eP1mmnnRacJW3Xrl36/vvvZbFYlJub2+K1TCaTcnNz9Z///Efr1q2jEA0AAAAAAAAAAAAAEFIer0/vralutQhtf88t36zjhvbT+FGZLNMJAIgLPboQzePx6LvvvpPZbNa6det0/fXXa8+ePcHtzz33nEaMGKGSkhJlZGRox44dkqSDDjpIRmPrq46mp6dLUrBtqAQCAfl8vm6/zv6vEYrXQ89Av8Yn+jX+0Kehsf8y2pEQihxM38cn+jU+0a/xiX7tvljMvxJ9H4/o0/hEv8Yn+rX7yL/oSejX+EOfxif6NTRiIQc3+AKa83Flp9rO+aRSp47IkMnAZyLW8J2OT/RrfKJfu6+z+dcQCAQCYY7lgO3evVvHH3+8TCaTkpKSNGrUKN14443KycnR+vXrdffdd2vVqlXKz8/XSy+9pK+++kqTJk1STk6O3nnnnVZf83e/+53efPNN3Xrrrbrwwgu7HWN5eblcLle3XwcAgHhxzDHHROR9yMEAAPyI/AsAQOSRfwEAiI6enoP79OmjlP5ZOv6eDzv9nM9uPkWu76u0d+/eLr8fAACR0Nn82/q0YT2Ex+OR1FiNePDBB+vxxx/XyJEj1atXLx111FF68sknNWDAAJWVlem9994LzoJmMBg6fO0eXH8HAAAAAAAAAAAAAIhBFotFe1yeLj1nr7tBFoslTBEBABA5PXppzuTk5OC/zzvvvBbJt3fv3vrlL3+pJ554Qp999pkmTZokSaqrq2vzNevr6yVJKSkpIY3VZrNp2LBh3X4dn8+nVatWSZJGjRoV8allER70a3yiX+MPfRqbQpGD6fv4RL/GJ/o1PtGvsYdzYLSFPo1P9Gt8ol9jD/kX7aFf4w99Gp/o19h0IDl4xw9dK0Trk2JReuogDRo0qEvPQ3TxnY5P9Gt8ol8jp0cXovXu3VtWq1Uej0cHH3xwq22aHt+zZ48yMjIkSbt27VIgEGh1ZrQdO3ZIktLT00Maq8FgCPkH1WQy8eGPQ/RrfKJf4w99GjtCnYPp+/hEv8Yn+jU+0a+xgXNgdAZ9Gp/o1/hEv8YG8i86i36NP/RpfKJfY8eB5GC7zaL8LLvKqpwdts3PssuebOHzEOP4Tscn+jU+0a/h1aOX5jSZTDr00EMlSdXV1a222bVrlySpX79+6tOnjzIyMuTxeLRp06YWbX0+nyorKyUpJHeOAQAAAAAAAAAAAACwP4vJoCvG5naq7ZSxubKYWk6wAgBALOrRhWiSdNJJJ0mSXn/99RbbAoGAPv74Y0nSmDFjJEmFhYWSpPfee69F+6VLl+qHH37Q8OHDlZmZGaaIAQAAAAAAAAAAAACJymo26dQRGTr/uCHttps0ZojGjciQ1czMPACA+NDjC9F+85vfyG63a8WKFXrkkUcUCAQkNRahPfTQQ1q9erUGDx6scePGSZImTZokk8mkxx57TCtXrgy+TlVVle666y5J0tSpUyO+HwAAAAAAAAAAAACAxNAryaxbJzj0t3OPVH6Wvdm2/Cy7/nbukZpR7FCvJHOUIgQAIPR6fFZLT0/X/fffr9/+9rd6+OGHtXDhQg0bNkzr16/Xpk2blJaWpr/+9a+yWq2SpOHDh+u6667T/fffr/PPP1/HHXeckpOTtXz5crlcLp1zzjkqLi6O8l4BAAAAAAAAAAAAAOJZrySzxo/K1KkjMlTjbtBed4P6pFhkT7bIYjIwExoAIO70+EI0SfrZz36m119/XSUlJfr000+1ZMkSHXTQQTrnnHM0depUDR48uFn7KVOmKC8vT0899ZS+/vprGQwG5eXl6bzzztNZZ50Vpb0AAAAAAAAAAAAAACQSq9kkk8En1/dV6mWxKD11kEwmCtAAAPEpJgrRJCk7O1uzZs3qdPuioiIVFRWFMSIAAAAAAAAAAAAAADq2d+9eSdKgQYOiGwgAAGFkjHYAAAAAAAAAAAAAAAAAAIDYRiEaAAAAAAAAAAAAAAAAAKBbYmZpTgAAAKCrbDabTCZTtMMAAAAAAAAAAMQhxqABoDkK0QAAABB3vD6/PL6A0gZmq8bl0c5aj+w2i6wmo8wmJgUGAAAAAAAAgFDzeH1q8AXkdDdoj6tBfVMsstssspgMsprjq1iLMWgAaB2FaAAAAIgrLo9Xi8ur9VhppcqqnMHH87PsmlqYq3GODKVYOQwGAAAAAAAAgFDZV+/V+2uqNfeTluOyV4zN1akjMtQrKT7GZRmDBoC2UYoLAACAuOHyeDVzUbmmL1jZbABAksqqnJq+YKVmLlorl8cbpQgBAAAAAAAAIL646r26+61yXfdi6+Oy1724UjMXlWtffeyPyzIGDQDtoxANAAAAccHr82txebXmL9vcbrv5yzbpg/Id8vr8EYoMAAAAAAAAAOKTx+vTe2uq9fyK9sdln1u+WYvXVMvj9UUostBjDBoAOkYhGgAAAOKCx+dXyZLKTrUtKa2Qh0EAAAAAAAAAAOiWBl9Acz7u3LjsnE8q5fUFwhxR+DAGDQAdoxANAAAAccHp9mrNNmfHDdU4RbrTzdToAAAAAAAAANAdTndDl8Zla+oawhxR+DAGDQAdoxANAAAAcaHG7elSe2cMD3gAAAAAAAAAQE+wx9W1cda9XWzfkzAGDQAdoxANAAAAcSHNZu1Se3uyJUyRAAAAAAAAAEBi6JvStXHWPl1s35MwBg0AHaMQDQAAAHHBbjMrP8veqbb5WXbZbeYwRwQAQGKy2WxKTU2NdhgAAAAAgAiw2yxdG5eN4eIsxqABoGMUoiEqvD6/XB6vttfUad12p7bX1Mnl8crr80c7NAAAEKOsJqOmFuZ2qu20wjxZTRwKAwAQSl6fX/W+gNIGZsuXmq6dtR7O9QEAAAAgzllMBl0xtnPjslPG5spiMoQ5ovBhDBoAOkYJLiLO5fFqcXm1HiutVFmVM/h4fpZdUwtzNc6RoRQrH00AANA1ZpNR4xwZmlwwRPOXbW6z3eSCbBU50mVmEAAAgJDhXB8AAAAAEpPVbNKpIzJ0/nFD9PyKtsdlJ40ZonEjMmQ1myIYXWgxBg0AHWMEEBHl8ng1c1F5q4m5rMqp6QtWanJBtmYUD2eAGgAAdFmK1awZxQ6NyemvktKKFhfCpxXmqciRznEGAAAhxLk+AAAAACS2Xklm3TrBoTE5/TTnk5Y3KE0Zm6txIzLUKyn2zwkZgwaA9vHrh4jx+vxaXF7dbnW4JM1ftkljcvpp/MhMqsQBAECXpVjNGj8yU0WOdO3ZVy+nq0F9U5Nkt1lkNRk5vgAAIIQ41wcAAAAASI3FaONHZerUERmqqWvQXleD+qRYZE+2yGIyxPRMaD/FGDQAtI1fQESMx+dXyZLKTrUtKa2Qx+cPc0QAACBemU1GJZkMqtm2Scbaag1ItSrFamYAAACAEONcHwAAAADQxGo2KSXJrIFpNjkG2jUwzaZeSea4KkJrwhg0ALSOGdEQMU63V2u2OTtuqMalO5xuL1OWAgCAbnG73dEOAQCAuMa5PgAAAAAgkTEGDQDNUY6LiKlxe7rU3lnXEKZIAAAAAABAKHCuDwAAAAAAAKAJhWiImDSbtUvt7cmWMEUCAAAAAABCgXN9AAAAAAAAAE0oREPE2G1m5WfZO9U2P8suuy2+luqw2WxKTU2NdhgAAAAAAIRMop/rAwAAAAAAAPgRhWiIGKvJqKmFuZ1qO60wT1ZTfHw8vT6/6n0BpQ3Mli81XTtrPXJ5vPL6/NEODQAAAACAbknUc30AAAAAQEten18uj1fba+q0brtT22vquC4KAAmG21ARMWaTUeMcGZpcMETzl21us93kgmwVOdJljoPBaZfHq8Xl1XqstFJlVc7g4/lZdk0tzNU4R4ZSrHwNAQAAAACxKRHP9QEAAAAALXFdFAAgUYiGCEuxmjWj2KExOf1VUlrR4iBkWmGeihzpcXEQ4vJ4NXNReasD8WVVTk1fsFKTC7I1o3h4XOwvAAAAACAxJdK5PgAAAACgJa6LAgCa8CuPiEuxmjV+ZKaKHOlyur1y1jXInmyR3WaW1WSMi7ujvT6/FpdXt3s3uCTNX7ZJY3L6afzIzLjYbwAAAABAYtr/XH/Pvno5XQ3qm5oku80SN+f6AAAAAICWuC4KANgfv/CICrPJqBSrWZlpyToso7cy05KVYjXHzUGHx+dXyZLKTrUtKa2Qh3XRAQAAAAAxzmwyKslkUM22TTLWVmtAqjWuzvUBAAAAAC1xXRQAsD9GAoEwcLq9WrPN2XFDNU5H63R7wxwRAAAAAACR4Xa7VVtbG+0wAAAAAAARwHVRAMD+KEQDwqDG7elSe2ddQ5giAQAAAAAAAAAAAIDw4LooAGB/FKIBYZBms3apvT3ZEqZIAAAAAAAAAAAAACA8uC4KANgfhWhAGNhtZuVn2TvVNj/LLrvNHOaIAAAAAAAAAAAAACC0uC4KANgfhWhAGFhNRk0tzO1U22mFebKa+CoCAAAAAAAAAAAAiC1cFwUA7I9feSAMzCajxjkyNLlgSLvtJhdkq8iRLjMHXAAAAAAAAAAAAABiDNdFAQD7Y95LIExSrGbNKHZoTE5/lZRWqKzKGdyWn2XXtMI8FTnSlWLlawgAAAAAAAAAAAAgNnFdFADQhF96IIxSrGaNH5mpIke69uyrl9PVoL6pSbLbLLKajFT8AwAAAAAAAAAAAIh5+18Xdbq9ctY1yJ5skd1m5rooACQQCtGAMDObjDIooJptm2QymTQg8xCZTKZohwUAAAAAAAAAAAAAIWP+b8FZitWszLTkaIcDAIgCCtGACHG73dEOAQAAAAAAAAAAAAAAAAgL5r8EAAAAAAAAAAAAAAAAAHQLhWgAAAAAAAAAAAAAAAAAgG6hEA0AAAAAAAAAAAAAAAAA0C3maAcAAAAAAAAAAAAAoDmbzSaTyRTtMACECN9pAEAioBANAAAAAAAgjLw+vzw+v5xur2rcHqXZrLLbzLKajDKbmKweAAAAzTUePwaUNjBbNS6PdtZ6ZLdZOH4EYhTfaQBAIqEQDQAAAAAAIExcHq8Wl1frsdJKlVU5g4/nZ9k1tTBX4xwZSrEyPAMAAIBGHD8C8YXvNAAg0VBiDQAAAAAAEAYuj1czF5Vr+oKVzS44SFJZlVPTF6zUzEVr5fJ4oxQhAAAAehKOH4H4wncaAJCIKEQDAAAAAAAIMa/Pr8Xl1Zq/bHO77eYv26QPynfI6/NHKDIAAAD0RBw/AvGF7zQAIFFRiAYAAAAAABBiHp9fJUsqO9W2pLRCHi46AAAAJDSOH4H4wncaAJCoKEQDAAAAAAAIMafbqzXbnB03VOOSLE43S7EAAAAkMo4fgfjCdxoAkKgoRAMAAAAAAAixGrenS+2ddQ1higQAAACxgONHIL7wnQYAJCoK0QAAAAAAAEIszWbtUnt7siVMkQAAACAWcPwIxBe+0wCAREUhWg9ks9mUmpoa7TAAAAAAAMABstvMys+yd6ptfpZddps5zBFFDuMaAAAAXZfIx49APOI7DQBIVGEpRPP7/e3+h9Z5fX7V+wJKG5gtX2q6dtZ65PJ45fXxNwMAAAAAIJZYTUZNLcztVNtphXmymmL/XkHGNQAAAA5cIh4/AvEsUb/THq9P++q92rbXrTVVTm3b69a+eq88Xl+0QwMAREhISqsrKir06KOP6osvvtCePXvk9XrbbGswGLRmzZpQvG1ccXm8WlxercdKK1VW5Qw+np9l19TCXI1zZCjFSiU8AAAAAACxwGwyapwjQ5MLhmj+ss1ttptckK0iR7rMMX7RgXENAACA7km040cg3iXid3pfvVfvr6nW3E9anhdeMTZXp47IUK8kzgsBIN51+5d+06ZN+vWvfy2Xy6VAIBCKmBKOy+PVzEXlrR6ElFU5NX3BSk0uyNaM4uEM2gIAAAAAECMMkqafcqiOHNxHTy7d2GIg/pITh+pnhw6QIXohhgTjGgAAAKGRYjVrRrFDY3L6q6S0osXx47TCPBU50jmmAmJEIn2nXfVe3f1WuZ5f0fp54XUvrtSkMUM0o9hBMRoAxLlu/8qXlJRo37596tu3ry6++GINGzZMKSkpoYgtIXh9fi0ur263El6S5i/bpDE5/TR+ZGZcVMQDAAAAABDPvD6/3i+v1h9fK9OkMUM058LRqvP4tMflUd8Uq5IsRj2/fLPuerNcfz5zZMye7zOuAQAAEFopVrPGj8xUkSNde/bVy+lqUN/UJNltFllNRo6lgBiTCN9pj9en99ZUt1qEtr/nlm/WcUP7afyoTFnNpghFBwCItG4Xoi1dulRms1lPPfWUhg0bFoqYEorH51fJkspOtS0prYibqVkBAAAAAIhnTef7Ne4GzV5SoZLSCg3L7K3UJLNq671at/0H+f87sXwsn+8zrgEAABB6ZpNRBgVUs22TTCaTBmQeIpOJog0gVsX7d7rBF9Ccjzt3Xjjnk0qdOiJDcTAJHACgDd3+id+zZ4+ys7MpQjtATrdXa7Y5O26oxmlLnW5vXEzPCgAAAABAPPvp+b4/IJVv+6HVtrF8vs+4BgAAQPi43e5ohwAghOL1O+10N3TpvLCmrkEpLM8JAHGr27eg9u/fXwaDIRSxJKQat6dL7Z11DWGKBAAAAAAAhEqinO8nyn4CAAAAAFq3x9W187y9XWwPAIgt3S5EGzt2rCorK7Vp06ZQxJNw0mzWLrW3J1vCFAkAAAAAAAiVRDnfT5T9BAAAAAC0rm9K187z+nSxPQAgtnS7EO3KK69UamqqbrjhBlVXV4cipoRit5mVn2XvVNv8LLvsNqYpBQAAAACgp/vp+b7JaJBjYG8dO7SvHAN7y2T8cXb5WD7fZ1wDAAAAADrHZrMpNTU12mGEnN1m6dp5ITcoAUBc69Lo34033tjq45mZmSorK1NRUZFGjhypjIwMJSUltdrWYDDo3nvv7XqkccpqMmpqYa6mL1jZYdtphXmymrpdOwgAAAAAAMKs6Xz/j6+VaXJBts4fM0R1Hp92uzzql2JVksWoBSu2aP6yTTF9vs+4BgAAAAC0z+vzy+MLKG1gtmpcHu2s9chus8hqMsocB+dIFpNBV4zN1XUvruyw7ZSxubKYDB22AwDEri4Vor3++usyGAwKBAKtbvd6vVq5cmWr25qeRyFac2aTUeMcGZpcMETzl21us93kgmwVOdLj4mAEAAAAAIB4ZzYZdaojQwU5/VW6fqemPPOFyqqcwe35WXZdfMJQvX/9z9Q72Ryz5/uMawAAAABA21werxaXV+ux0soW54RTC3M1zpGhFGtszxxtNZt06ogMnX/cED2/ou3zwkljhmjciAxZzaYIRgcAiLQuZbUzzzxTBgMVyqGWYjVrRrFDY3L6q6S0osVByLTCPBU50mP+IAQAAAAAgEQSkPTQh9+0WqBVVuXUH17+WpMLsjWjeHjkgwshxjUAAAAAoCWXx6uZi8rbPCecvmBl8Jww1s+XeiWZdesEh8bk9NOcT1oW3U0Zm6txIzLUKym29xMA0LEu/dLfc8894Yoj4aVYzRo/MlNFjnTt2Vcvp6tBfVOT4mpaVgAAAAAAEoXX59fi8up2ZwmTpPnLNmlMTj+NH5kZ0+f+jGsAAAAAwI8S7ZxQaixGGz8qU6eOyFBNXYP2uhrUJ8Uie7JFFpOBmdAAIEF0O5t9/vnnWrt2bafa/utf/9Jzzz3X3beMW2aTUUkmg2q2bZKxtloDUq1Kscbu8hwAAAAAACQqj8+vkiWVnWpbUlohj88f5ojCj3ENAAAAAGiUiOeEUuMynSlJZg1Ms8kx0K6BaTb1SjJThAYACaTbI4EXXHCB/vznP3eq7YMPPqgHH3ywu28Z99xut2pra6MdBgAAAAAAOEBOt1drtjk7bqjGJVmcbm+YI4ocxjUAAAAAJLpEPicEACS2Li3NWVtbqz179rR4vK6uTlu2bGnzeYFAQN99950qKysVCAS6HiUAAAAAAEAMqXF7utTeWdegzLTkMEUDAAAAAIgkzgkBAImqS4Vo+/bt0y9/+UvV19cHHzMYDCorK9PPf/7zTr3GkUce2aUAAQAAAAAAYk2azdql9vZkS5giAQAAAABEGueEAIBE1aWlOTMyMnTJJZcoEAgE/5PU7P/b+2/gwIG67bbbwrIjAAAAAAAAPYXdZlZ+lr1TbfOz7LLbunSvYI9ms9mUmpoa7TAAAAAAIGoS+ZwQAJDYupzRrrrqKp199tmSGgvQxo0bp1GjRunBBx9s8zlGo1EpKSlKS0s74EABAAAAAABihdVk1NTCXE1fsLLDttMK82Q1delewR7J6/PL4wsobWC2alwe7az1yG6zyGoyyhwH+wcAAAAAnZWI54QAAEgHUIhmsVg0aNCg4P8fe+yxGjZsWLPHAAAAAAAAEpnZZNQ4R4YmFwzR/GWb22w3uSBbRY70mC/Ucnm8WlxercdKK1VW5Qw+np9l19TCXI1zZCjFyh3+AAAAABJDop0TAgDQpNsjgM8++2wo4gAAAAAAAIgrKVazZhQ7NCanv0pKK1oUaE0rzFORIz3mC7RcHq9mLipv9eJKWZVT0xes1OSCbM0oHh7z+woAAAAAnZUo54QAAOwvLFnN7/c3+3+v16u6ujpt375dH330kaZOnRqOtwUAAAAAAOhRUqxmjR+ZqSJHupxur5x1DbInW2S3meNiyUqvz6/F5dXt3uEvSfOXbdKYnH4aPzIz5vcZAAAAADpr/3PCPfvq5XQ1qG9qkuw2S1ycEwIA8FMhKUT7+OOP9fDDD2v9+vXyeDwdtqcQDQAAAAAAJArzfy8upFjNykxLjnY4IeXx+VWypLJTbUtKK1hyBgAAAEDCMZuMMiigmm2bZDKZNCDzEJlMpmiHBQBAWHS7EG316tW66qqr5PP5FAgE2n8zs1lHHXVUd98SAAAAAAAAPYDT7dWabc6OG6pxmU6n28uyMwAAAAASktvtjnYIAACEXbdH/p555hl5vV4deuihuvzyy5WcnKxrr71Wp512ms4991xt375dr7zyir744guNHj1aTz31VAjCBgAAAAAAQLTVuDueGX9/zrqGuJsVDgAAAAAAAECjbheiffHFFzKZTHrooYeUk5MjSRo4cKC2bNmiE044QZJ01llnafr06Vq8eLHeeustTZgwoUvvsWHDBv3iF79ot81nn32mfv36Bf//008/1dy5c7V27VrV1dUpNzdXv/nNb3T22WfLYDB0cS8BAAAAAADwU2k2a5fa25MtYYoEAAAAAAAAQLR1uxDt+++/V1ZWVrAITZKGDx+uTz75RB6PR1arVQaDQbfccosWL16sV155pcuFaGvWrJEkHXLIIXI4HK22SUpKCv57wYIFuuOOO2SxWDRmzBhZLBYtW7ZMt912m7788kvNmjXrAPYUAAAAAAAA+7PbzMrPsqusquPlOfOz7LLbWJYTAAAAAAAAiFchGf3r06dPs/8fOnSolixZog0bNmjYsGGSpKysLGVnZ2vdunVdfv3Vq1dLki688EKde+657bbdsGGD7rrrLqWmpurZZ5/ViBEjJElVVVW66KKL9Morr6iwsLDDGdYQXl6fXx6fX063VzVuj9JsVtltZllNRplNxmiHBwBAXCL/AgAQHfGcg60mo6YW5mr6gpUdtp1WmCdrjO8vAAAAAAAAgLZ1uxCtf//+2rlzZ7PHDj74YEnSt99+GyxEk6RevXpp69atXX6PphnRRo0a1WHbefPmyefz6bLLLgsWoUmNhXC33367Lr/8cs2bN49CtChyebxaXF6tx0orm90xnZ9l19TCXI1zZCjFyh3SAACEEvkXAIDoiPccbDYZNc6RockFQzR/2eY2200uyFaRIz3mC+8AAAAAAAAAtK3bo38jR45UdXW1Pvnkk+Bjubm5CgQC+vzzz4OP1dXVafPmzUpLS+vye6xZs0ZJSUk69NBDO2z70UcfSZJ+/vOft9h2wgknqHfv3lq1apWqq6u7HAe6z+Xxauaick1fsLLFsh1lVU5NX7BSMxetlcvjjVKEAADEH/IvAADRkSg5OMVq1oxihx4+7yjlZ9mbbcvPsuvh847SjOLhMV1wBwAAAAAAAKBj3R4BPOOMM/Tee+9p+vTpOv/883X99dfrqKOOUlpaml5++WUdeeSRGjFihObMmaMffvhBo0eP7tLrb9myRU6nU8OGDdOCBQv02muvacOGDbJarTrmmGM0bdo0HX744ZKkXbt26fvvv5fFYlFubm6L1zKZTMrNzdV//vMfrVu3ThkZGd3dfXSB1+fX4vLqdu+QlqT5yzZpTE4/jR+ZyZ3SAAB0E/kXAIDoSLQcnGI1a/zITBU50rVnX72crgb1TU2S3WaJiyVIAQAAAAAAAHSs24VoRUVFmjBhgt566y09/fTT+v3vfy+z2azzzjtPJSUluuWWW4JtDQaDLrzwwi69/urVqyVJ69at07333qujjz5aBQUFWrt2rT744AOVlpZq1qxZOv3007Vjxw5J0kEHHSSjsfUBzvT0dEkKtg2VQCAgn8/X7dfZ/zVC8Xo9iccXUMmSyk61LSmtUJEjXQYFwhxVZMRzvyYy+jX+0KehYTKZIvp+ocjB8dz35N+W/0Zso1/jE/3afbGYf6X47vtEzMEGSWb5VbNtk0wmk/qn58poNEgKzecF0RPP39VERr92H/kXPQn9Gn/o0/hEv4ZGLOZg+j4+0a/xiX6NT/Rr93U2/4ZkTYT7779fJ554opYuXSqDwSBJuuaaa1RdXa3XXntNgUBAJpNJl1xySatLZrZnzZo1kqRDDjlEs2fPVnZ2tiTJ7/dr7ty5+utf/6pbb71VRxxxhFwulyQpOTm5zddLSkqSpGDbUHG73Vq5cmVIX3PVqlUhfb1ostlsShuYrTXbnB03VuMSJXv21atm2ya53e4wRxdZ8dSv+BH9Gn/o0wN3zDHHRPT9Qp2D46nvyb8/iqd+xY/o1/hEvx6YWM+/Unz1PTm40ddffx3tEBAG8fRdxY/o1wND/kVPRb/GH/o0PtGvBy7WczB9H5/o1/hEv8Yn+vXAdDb/hqQQTZImTpyoiRMn/vjCZrNmzZql66+/XlVVVRoyZIj69evX5de99tprdc455yg1NbXZ841Go6ZOnaqvvvpKH330kRYsWBAscmsqhmtPIBDbdxnHGpPJpBqXp0vPcboaIn5HAwAA8YT8CwBAdJCDAQAAAAAAACSikBWieTweVVZWqra2ttUir4qKClVUVEiSjj322M4HaDZryJAhbW4vKirSRx99pFWrVumss86SJNXV1bXZvr6+XpKUkpLS6Rg6w2azadiwYd1+HZ/PF6y+HDVqVFwNQu+s7dogfN/UJA3IPCRM0URWPPdrIqNf4w99GptCkYPjue/Jv/HZr4mMfo1P9Gvs4Ry4Y4mag+O5TxMZ/Rqf6NfYQ/5Fe+jX+EOfxif6NTYxBo220K/xiX6NT/Rr5ISkEO2BBx7QM888024BWBODwRBcbjMUBg4cKKlxStSMjAxJ0q5duxQIBFqdGW3Hjh2SpPT09JDFIDXuV6g/qCaTKa4+/HabRflZdpVVNS5NYjIadFhGqlKTzKqt92p9da18/sYixvwsu+w2S1ztf5N461c0ol/jD30aO0Kdg+Ot73+af9tD/kWsoV/jE/0aGzgH7hg5OP76FI3o1/hEv8YG8i86i36NP/RpfKJfY0eocrDNZgv2O30fP+jX+Ea/xif6NbyM3X2Bp556So899pjcbrcCgUCH//n9/i69/t13361rrrlG33zzTavbt23bJknKzMxUnz59lJGRIY/Ho02bNrVo6/P5VFlZKUkhuXMMXWM1GTW1MFdpNouuPvkQfXzjyXrkvKN14y+G65HzjlbpH07S1ScfojSbRdMK82Q1dfvjCQBAwmvKv51B/gUAIHTIwQAAAAAASfL6/Kr3BZQ2MFu+1HTtrPXI5fHK6+vadXP0LPQrALSu2zOi/eMf/5DBYNDEiRN19dVXKz09XWZzyFb8VFlZmf7973/r0EMP1bXXXtti+8KFCyVJJ510kiSpsLBQ//jHP/Tee+9pypQpzdouXbpUP/zwg4YPH67MzMyQxYjOMZuMOtWRoYKc/ipdv1NTnvmi2Z3h+Vl2XXzCUL1//c/UO9ksM4PwAAB0m9lk1DhHhiYXDNH8ZZvbbDe5IFtFjnTyLwAAIUIOBgAAAAC4PF4tLq/WY6WVLa6LTi3M1ThHhlKsobu2jsigXwGgbd0e5dyyZYv69++vu+66S1lZWSEtQpOkSZMmSZLmzZunZcuWBR/3+Xz6y1/+os8//1xDhw7VGWecEWxvMpn02GOPaeXKlcH2VVVVuuuuuyRJU6dODWmM6LyApIc+/EZ/ePnrFsuTlFU59YeXv9ZDH36rQHTCAwAgLhkkTT/lUN13zuHKz7I325afZdd95xyu6accopaLmgMAgO5IsZo1o9ihh887qtUc/PB5R2lG8XAGpwEAAAAgDrk8Xs1cVK7pC1a2el10+oKVmrlorVweb5QixIGgXwGgfd0e6UxNTdWAAQNkNIbnzt0JEyZoxYoVeuGFF3TxxRfriCOOUEZGhlavXq3vvvtOAwYM0OzZs5WUlCRJGj58uK677jrdf//9Ov/883XccccpOTlZy5cvl8vl0jnnnKPi4uKwxIr2eX1+LS6vbvdOcEmav2yTxuT00/iRmdwRDgBAN3l9fr1fXq0/vlamSWOGaM6Fo1Xn8WmPy6O+KVYlWYx6fvlm3fVmuf585kjyLwAAIZZiNWv8yEwVOdLldHvlrGuQPdkiu80sq8lI3gUAAACAOMR10fhEvwJAx7pdiHbsscfq448/1r59+9SrV69QxNTCnXfeqYKCAj3//PNas2aN1qxZo4EDB+qSSy7RlClT1K9fv2btp0yZory8PD311FP6+uuvZTAYlJeXp/POO09nnXVWWGJExzw+v0qWVHaqbUlpBUuTAAAQAk35t8bdoNlLKlRSWqFhmb2VmmRWbb1X67b/IP9/pyIl/wIAEB7m/xacpVjNykxLjnY4AAAAAIAw47pofKJfAaBj3S5Eu+qqq/TRRx/pzjvv1L333iuDITyLOo0fP17jx4/vdPuioiIVFRWFJRYcGKfbqzXbnB03VOO0pU63l+VJAADopp/mX39AKt/2Q6ttyb8AAAAAAAAA0H1cF41P9CsAdKzbv3rDhw/X3/72N11zzTVauXKlTjzxRPXr16/dgrRrrrmmu2+LGFTj9nSpvbOugTvFAQDoJvIvAAAAAAAAAEQW47LxiX4FgI51uxCttrZWc+bMkd/v15YtW/TCCy90+BwK0RJTms3apfb2ZEuYIgEAIHGQfwEAAAAAAAAgshiXjU/0KwB0rNuFaA888IBWrlwpSRowYICysrJksfCD2h02m00mkynaYYSc3WZWfpZdZVWN05WajAYdlpGq1CSzauu9Wl9dK58/IEnKz7LLbmOaUgAAuuun+bc95F8AAAAAAGJXvF5bAIBYxLhsfKJfAaBj3f7l++CDD2QwGDRz5kydddZZoYgpYXl9fnl8AaUNzFaNy6OdtR7ZbRZZTUaZTcZoh9dtVpNRUwtz9cfXyjS5IFvnjxmiOo9Pu10e9UuxKsli1IIVWzR/2SZNK8yTNQ72GQCAaGvKv9MXrOywLfkXAIDwaDzf98vp9qrG7VGazSq7zRw35/sAAPREiZR/4/3aAgDEokQdl433/Juo/QoAXdHtQrTdu3crOzubIrRucnm8WlxercdKK5tVUOdn2TW1MFfjHBlKscZ2xbTZZNSpjgwV5PRX6fqdmvLMFy329eIThur963+m3snmuDgYAQAg2swmo8Y5MjS5YIjmL9vcZrvJBdkqcqSTfwEACLFEON8HAKCnSaT8m0j7CgCxJBHHZRMhJyVivwJAV3X7lz49PZ2pnrvJ5fFq5qLyVpNVWZVT0xes1OSCbM0oHh7zyTkQkB764BvNX976vv7h5a81eUy2bikeHoXoAACITylWs2YUOzQmp79KSitaDAJMK8xTkSM95o8zAADoaRLpfB8AgJ4ikfJvIu0rAMSiRBqXTaSclEj9CgAHotu/fqeddpqeeOIJlZWVKT8/PxQxJRSvz6/F5dXtVkxL0vxlmzQmp5/Gj8yM2crp+gaf3l1T3WoR2v7mL9+k0UP7avzITCVZKHIEACAUUqxmjR+ZqSJHupxur5x1DbInW+JqWnQAAHqSRDrfBwCgp0ik/JtI+woAsWz/cdk9++rldDWob2pSXC2hnIg5KRH6FQAOVLd/Aa+88koNGTJEV155pd555x3t27cvFHElDI/Pr5IllZ1qW1JaIY/PH+aIwsfrD2jux53b17mfVMrnD4Q5IgAAEovZZFSK1azMtGQdltFbmWnJSrGyHDYAAOGQSOf7AAD0FImUfxNpXwEg1plNRiWZDKrZtknG2moNSLXG1bhsouakeO9XADhQ3Z4R7U9/+pMGDx6sf/3rX7r++utlMBjUu3dv2Wy2VtsbDAZ99NFH3X3buOF0e7Vmm7PjhmqcttTp9sbsNJ5Od0OX9rWmrkEpSbG5rwAAAACAxJZI5/sAAPQUiZR/E2lfASBeuN3uaIcQFomek+K1XwHgQHX7F/71118P/jsQCCgQCKimpkY1NTWttjcYDN19y7hS4/Z0qb2zrkGZaclhiia89rgautR+r6tBA9NaL2gEAAAAAKAnS6TzfQAAeopEyr+JtK8AgJ6NnAQA2F+3C9FmzZoVijgSVprN2qX29mRLmCIJv74pXYu9TxfbAwAAAADQUyTS+T4AAD1FIuXfRNpXAEDPRk4CAOyv24VoZ511VijiSFh2m1n5WXaVVXU8XWl+ll12W+xOU2q3Wbq2rxyEAAAAAABi1E/P901Ggw7LSFVqklm19V6tr66Vzx+QFPvn+wAA9BSJlH8T6doCAKBnS6T8CwDoGL/yUWY1GTW1MFfTF6zssO20wjxZTcbwBxUmZqNBl4/N1fUvruyw7RVjc2U2sowrAAAAACA2NZ3v//G1Mk0uyNb5Y4aozuPTbpdH/VKsSrIYtWDFFs1ftinmz/cBAOgpEin/JtK1BQBAz5ZI+RcA0DEK0aLMbDJqnCNDkwuGaP6yzW22m1yQrSJHuswxnJiTLCb9fESGJo8ZovnL29nXMdk6dUSGkiymCEYHAAAAAEDomE1GnerIUEFOf5Wu36kpz3zRbMaS/Cy7Lj5hqN6//mfqnWyO6fN9AAB6ikTKv4l0bQEA0LMlUv4FAHSMQrQeIMVq1oxih8bk9FdJaUWLxDytME9FjnSlWGO/u4wGaXrRoTpySB89uXRji3295MSh+tmhA8RkaAAAAACAWBeQ9NCH37R6cbisyqk/vPy1Jhdka0bx8MgHBwBAnEqk/JtI1xYAAD1bIuVfAED7OPvoIVKsZo0fmakiR7r27KuX09WgvqlJstssspqMcVEZ7vX59X55tf74WpkmjRmiOReOVp3Hpz0uj/r+d1rW55dv1l1vluvPZ47U+JGZcbHfAAAAAIDE4/X5tbi8ut0ZSiRp/rJNGpPTj3NgAABCIBHzbyJcWwAA9GyJmH8BAG2jEK0HMZuMMiigmm2bZDKZNCDzEJlM8bM8pcfnV8mSStW4GzR7SYVKSis0LLO3UpPMqq33at32H+QPNLYtKa1gunAAAAAAQMxqOgfuDM6BAQAIjUTNv/F+bQEA0LMlav4FALSOQrQeyO12RzuEsHC6vVqz7cepwf0BqXzbD622Latyyun2MmU4AAAAACAm/fQcuD2cAwMAEBqJnn/j9doCAKBnS/T8CwBojlJjREyN29Ol9s66hjBFAgAAAABAeHEODABA5JF/AQCIPPIvAGB/FKIhYtJs1i61tydbwhQJAAAAAADhxTkwAACRR/4FACDyyL8AgP1RiIaIsdvMys+yd6ptfpZddhtTsgIAAAAAYhPnwAAARB75FwDQk9lsNqWmpkY7jJAj/wIA9kchGiLGajJqamFup9pOK8yT1cTHEwAAAAAQmzgHBgAg8si/AICeyOvzq94XUNrAbPlS07Wz1iOXxyuvzx/t0EKC/AsA2B+/8ogYs8mocY4MTS4Y0m67yQXZKnKky8xBCAAAAAAgRnEODABA5JF/AQA9jcvj1aLV23ROyWc68d4lKn74UxXM+lDnlHymRau3yeXxRjvEbiP/AgD2x7yXiKgUq1kzih0ak9NfJaUVKqtyBrflZ9k1rTBPRY50pVj5aAIAAAAAYhvnwAAARB75FwDQU7g8Xs1cVK75yza32FZW5dT0BSs1uSBbM4qHx3xeIv8CAJrwS4+IS7GaNX5kpooc6XK6vXLWNciebJHdZpbVZKQKHgAAAAAQNzgHBgAg8si/AIBo8/r8Wlxe3WoR2v7mL9ukMTn9NH5kZsznJ/IvAECiEA1RYv7vwUaK1azMtORohwMAAAAAQNhwDgwAQOSRfwEA0eTx+VWypLJTbUtKK+JmyUryLwAg9rMZAAAAAAAAAAAAAAA9hNPt1Zptzo4bqnGZTqfbG+aIAACIDArRAAAAAAAAAAAAAAAIkRq3p0vtnXUNYYoEAIDIohANAAAAAAAAAAAAAIAQSbNZu9TenmwJUyQAAEQWhWgAAAAAAAAAAAAAAISI3WZWfpa9U23zs+yy28xhjggAgMigEA1R4fX55fJ4tb2mTuu2O7W9pk4uj1denz/aoQEAAAAAAAAAYhxj0ACAaLKajJpamNupttMK82Q1cdkeABAfKK1GxLk8Xi0ur9ZjpZUqq3IGH8/PsmtqYa7GOTKUYuWjCQAAAAAAAADoOsagAQDRZjYZNc6RockFQzR/2eY2200uyFaRI11mCtEAAHGCMy1ElMvj1cxF5a0ecJVVOTV9wUpNLsjWjOLhDAQAAAAAAAAAALqEMWgAQE+RYjVrRrFDY3L6q6S0okVx9LTCPBU50slHAIC4QlZDxHh9fi0ur2636l+S5i/bpDE5/TR+ZCbV/wAAAAAAAACATmEMGgDQ06RYzRo/MlNFjnTt2Vcvp6tBfVOTZLdZZDUZyUMAgLhDZkPEeHx+lSyp7FTbktIKeXz+MEcEAAAAAAAAAIgXjEEDAHois8moJJNBNds2yVhbrQGpVqVYzRShAQDiEtkNEeN0e7Vmm7PjhmqcIt3p9oY5IgAAAAAAAABAvGAMGgDQk7ndbtXW1kY7DAAAwopCNERMjdvTpfbOuoYwRQIAAAAAAAAAiDeMQQMAAABAdFGIhohJs1m71N6ebAlTJAAAAAAAAACAeMMYNAAAAABEF4VoiBi7zaz8LHun2uZn2WW3mcMcEQAAAAAAAAAgXjAGDQAAAADRRSEaIsZqMmpqYW6n2k4rzJPVxMcTAACgIx6vT/vqvdq21601VU5t2+vWvnqvPF5ftEMDAPwXv9UAAEQGY9AAAAAAEF3c7oOIMZuMGufI0OSCIZq/bHOb7SYXZKvIkS4zgwAAAADt2lfv1ftrqjX3k0qVVTmDj+dn2XXF2FydOiJDvZI45AeAaOK3GgCAyGEMGgAAAACii5FORJRB0vRTDtWRg/voyaUbWwzCX3LiUP3s0AEyRC9EAACAmOCq9+rut8r1/IqWF1fKqpy67sWVmjRmiGYUOyhwAIAo4bcaAIDIS7GaNaPYoTE5/VVSWtFiDHpaYZ6KHOlKsZJ7AQAAACDUONNCxHh9fr1fXq0/vlamSWOGaM6Fo1Xn8WmPy6O+KVYlWYx6fvlm3fVmuf585kiNH5nJHWkAAACt8Hh9em9NdauFDft7bvlmHTe0n8aPypTVbIpQdAAAid9qAACiKcVq1viRmSpypMvp9spZ1yB7skV2m1lWk5FxZwAAAAAIEwrREDEen18lSypV427Q7CUVKimt0LDM3kpNMqu23qt123+QP9DYtqS0gqnRAQAA2tDgC2jOx5Wdajvnk0qdOiJD3OwPAJHFbzUAANFl/m/BWYrVrMy05GiHAwAAAAAJgSFORIzT7dWabT9Og+4PSOXbfmi1bVmVU063l+nRAQAAWuF0NzQ7rmpPWZVTNXUNSmHJNwCIKH6rAQAAAAAAACQapptCxNS4PV1q76xrCFMkAAAAsW2Pq2vHSXu72B4A0H38VgMAAAAAAABINBSiIWLSbNYutbcnW8IUCQAAQGzrm9K146Q+XWwPAOg+fqsBAAAAAAAAJBoK0RAxdptZ+Vn2TrXNz7LLbouvJUlsNptSU1OjHQYAAAklXvOv3Wbp2nEVBf4AEHGJ/Fsdr/kXAAAAAICf4hwYAJqjEA0RYzUZNbUwt1NtpxXmyWqKj4+n1+dXvS+gtIHZ8qWma2etRy6PV16fP9qhAQAQt+I9/1pMBl0xtnPHVVPG5spiMoQ5IgDATyXib3W8518AQGzx+vxyebzaXlOnddud2l5TR14CACDMEin/cg4MAK2Lrymn0KOZTUaNc2RocsEQzV+2uc12kwuyVeRIlzkOCtFcHq8Wl1frsdJKlVU5g4/nZ9k1tTBX4xwZSrHyNQQAIJQSIf9azSadOiJD5x83RM+vaPu4atKYIRo3IkNWsymC0QEApMT7rU6E/AsAiB3kJQAAIi+R8m8i7SsAdBW/foioFKtZM4odGpPTXyWlFS0S87TCPBU50uMiMbs8Xs1cVN5q0V1ZlVPTF6zU5IJszSgeHhf7CwBAT5BI+bdXklm3TnBoTE4/zfmk5YDHlLG5GjciQ72SYns/ASCWJcpvdSLlXwBAz0deAgAg8hIp/ybSvgLAgeCXDxGXYjVr/MhMFTnS5XT/f/buPD6q6v7/+DuzJTOECYskIdYAiQZCwF0SF0w1IA12cS1VqTtLtUVslVZE61KhWq2tWhoWdyw/l1ptFTdUUr/KUq0IhQgKCGogIEtGmElm/f2RMiVmmyyTzL3zej4ePh4y98zMOfncuZ97zj333KA8dQG50+xyO21yWC2mWAktGApraVVNqyu/SdKiFVtVPKSfykdkm6LdAAD0pGTMv71SbSofma2xw7NUWxfQPm9AfVx2udPssltTDL+6DgCYgdmP1cmYfwEAiYu8BABA90um/JtMbQWAjuKohx5hs1rkctiUnZGmgqzeys5Ik8thM00i9ofCqli2OaayFZWb5OdZ4QAAdFqy5l+HzSpXqk0DM5wqHOjWwAyneqXaDD+xAQDMxMzH6mTNvwCAxEReAgCg+yVT/k2mtgJAR5lj1g+QYDy+oNZv97RdUA1LtHp8wTjXCAAA8yP/AgDQ/ci/AIBEQl4CAKD7JVP+Taa2AkBHMRENiINan79d5T11gTjVBACA5EH+BQCg+5F/AQCJhLwEAED3S6b8m0xtBYCOYiIaEAcZTke7yrvT7HGqCQAAyYP8CwBA9yP/AgASCXkJAIDul0z5N5naCgAdxUQ0IA7cTpuKctwxlS3KccvttMW5RgAAmB/5N3k4nU6lp6f3dDUAACL/AgASyzfzktWSosKBvXXS4L4qHNhbVktKdBt5CQCArpFM+Zc+MAC0jSMfeoQ/GFIgFJHHF9Beb0B9XXa5nXbZrSly2Kw9Xb1Oc1gtmlKap2mLV7dZdmppvhxW5oQCAOIvGArLHwrL4wuq1udXhtMht9Mmh9UimwlyEfnX/Br24YgyBg5SrdevXfv9cjvtptmHAcCIyL8AgERyMC/d8sI6TSwZpIuLc1XnD2mP169+LodS7RYtXvW5Fq3YSl4CAKCLJFP+pQ8MAG1jIhq63YH6oN5YX6MF72zWumpP9PWiHLcmjc7T2OFZ6pVq7F3TZrVoTGGWJpbkatGKbS2Wm1gySGWFmVw4BQDEndcf1NKqGs2rbJp/p5TmaUxhllwO8i8SVzLswwBgRORfAEAisVktGluYpZIh/VW5cZcmP/F+k/7D5acM1hvXn67eaTbyEgAAXSCZ8i99YABoG1dq0K289UHd9XKV/rKqaWJeV+3R9KdX65LiXM0cX2j4yWguh00zxxeqeEh/VVRuanLCNbU0X2WFmVwwBQDEndcf1OwlVc12jNdVezRt8WpNLBmkmeOHGT4vkX/NKZn2YQAwIvIvACCRRCQ98NYnLfYfbnxuTbT/AAAAukYy5V/6wADQOo5+6Db+YEivr69pdhLaoZ5auU2jBvdT+chswz+m0+WwqXxEtsoKM7X3QL083oD6pqfyCCkAQLcJhsJaWlXT6t1ZkrRoxVYVD+mn8hHZhs9P5F9zScZ9GACMiPwLAEgE9B8AAOh+yZh/6QMDQMs4AqLbBEIRzf/n5pjKzn9ns4KhSJxr1D1sVotSrSmq3b5Vlv01GpDukMth7GVnAQDG4Q+FVbEstvxbUblJ/lA4zjXqHuRf80jWfRgAjIj8CwDoafQfAADofsmaf+kDA0DzWBEN3cbjC2j9dk/bBdWwRGttXUAugz+e81A+n6+nqwAASEIeX7Bd+dfjC5pqyXDyr/El+z4MAEZE/gUA9BT6DwAAdL9kz7/0gQGgMabjotvs9QbaVX5fO8sDAICman3+dpX31JF/kVjYhwEAAADEiv4DAADdj/wLADgUE9HQbfq67O0q36ed5QEAQFMZTke7yrvTyL9ILOzDAAAAAGJF/wEAgO5H/gUAHIqJaOg2bqddRTnumMoW5bhNdxLidDqVnp7e09UAACQZt9PWvvzrNM+S6JLUp08fDRgwoKergU745j5staSocGBvnTS4rwoH9pbVkhLdZsZ9GAAAAEDskr0PDABIbGa9Vkj+BQAciolo6DZ2a4omjc6Lqezk0XmyW1PaLmgAwVBY9aGIMgYOUig9U7v2++X1BxUMhXu6agCAJOCwWjSlNLb8O7U0Xw6rOU4P/cGQ6oIRufrnaL8tQzu/9utAfVD+YKinq4Z2OrgPZzjtuvaMI/XPGWfooYuO14zvDNNDFx2vyhu/rWvPOFIZTrup9mEA5hIMheX1B7Wjtk4bdni0o7aOfiEAAHGQrH1gAEBiM/u1QvIvAOBQTDdGt3HYrBo7PEsXj8rVX1Zta7HcJcW5GjM8Sw6btRtrFx9ef1BLq2o0r3Kz1lV7oq8X5bg1pTRPYwqz5HLwMwQAxI/NatGYwixNLMnVohUt59+JJYNUVpgpmwkGAQ7UB/XG+hoteKdp/p00Ok9jh2epVyr51yhsVovGFmapZEh/VW7cpclPvN8krpefMlhvXH+6eqfZTLEPAzAX+oUAAHSfZOwDAwASWzL0Ccm/AIBDGTurwXB6pdp089mFKh7ST/ObuTg8eXSexpjk4rDXH9TsJVXNnnCtq/Zo2uLVmlgySDPHDzP8CSYAILG5HDbNHF+o4iH9VVG5qUn+nVqar7LCTFPkI299UHe9XNXspPd11R5Nf3q1LinO1czxhaY430gWEUkPvPVJi+dVNz63JnpeBQCJhH4hAADdL0XStDOP0rFH9NGj737WpA98xamDdfpRA3quggCApJFMfcJkGoMGALSOIz26Xa9Um8pHZmvs8CzV1gW0zxtQH5dd7jS77NYUU6yEFgyFtbSqptVZ/5K0aMVWFQ/pp/IR2cz+BwDElcthU/mIbJUVZsrjC8pTF5A7zS630yaH1WKKPOQPhvT6+ppWV16VpKdWbtOowf1UPjLbFOcdZsd5FQCj4vgFAED38wdDem1djX7993W6pDhX8y89UXX+kPZ6/errcijVbtFfVm7TnS9V6Y7vF9EvBADETTL2CZNhDBoA0DYmoqFHOGxWOWySK9WmgRnOnq5Ol/OHwqpYtjmmshWVm1iGFgDQLWz/7ey7HDZlZ6T1dHW6XCAU0fx/xpZ/57+zWWOHZ4kb8BIf51UAjIrjFwAA3e9gv7DWF9DcZZtUUblJQ7N7Kz3Vpv31QW3Y8bXCkYay9AsBAPGUrH1Cs49BAwDaRhcLiAOPL6j12z1tF1TD0rseX5ClaAEA6CSPL9Cu/FtbF5CLx3MmPM6rABgVxy8AALrfN/uF4YhUtf3rZsvSLwQAxBN9QgBAsjL+tGogAdX6/O0q76kLxKkmAAAkj73e9uXTfe0sj57BeRUAo+L4BQBA96NfCABIFPQJAQDJyrAT0aZNm6ahQ4fq+eefb3b7e++9pyuuuEInn3yyjjvuOJ1//vl69tlnFYlEurmmSEYZTke7yrvT7HGqCQAAyaOvq335tE87y6NncF4FwKg4fgEA0P3oFwIAEgV9QgBAsjLkRLRnn31Wr732WovbFy9erCuuuEL/+te/NHz4cBUXF2vTpk2aNWuWZs6c2Y01RbJyO20qynHHVLYoxy23k6V2AQDoLLfT3r78y+COIXBeBcCoOH4BABKZ0+lUenp6T1ejyyV7v9CscQUAI6JPCABIVoabiLZlyxbNnj271e133nmn0tPT9cwzz+jhhx9WRUWFlixZotzcXD3//PN69dVXu7HGSEYOq0VTSvNiKju1NF8Oq+F+igAAJBy7NUWTRseWfyePzpPdmhLnGqErcF4FwKg4fgEAElEwFFZ9KKKMgYMUSs/Urv1+ef1BBUPhnq5al0jWfqHZ4woARkSfEACQrAyV0fx+v37xi1/IYrFo+PDhzZZZuHChQqGQrrrqqkZlcnJydOutt0bLAPFks1o0pjBLE0tyWy03sWSQygozZePkEgCATnPYrBo7PEsXj2o9/15SnKsxw7PksFm7qWboDM6rABgVxy8AQKLx+oNa8p/turBiuU69e5nGP/ieSua8pQsrlmvJf7bL6w/2dBU7LRn7hckQVwAwIvqEAIBkZag1Pu+//36tW7dO99xzj1577TWtX7++SZm3335bknTWWWc12XbKKaeod+/eWrt2rWpqapSVlRX3OiN5uRw2zRxfqOIh/VVRuUnrqj3RbUU5bk0tzVdZYaZcDkP9DAEASGi9Um26+exCFQ/pp/nvbG6SfyePztOY4VnqlUr+NRLOqwAYFccvAECi8PqDmr2kSotWbGuybV21R9MWr9bEkkGaOX6Y4fNSMvULkymuAGBE9AkBAMnIMFntvffe06OPPqqzzz5bP/jBD/Taa681KfPVV19p9+7dstvtystrutSp1WpVXl6ePvroI23YsIGJaIg7l8Om8hHZKivM1N4D9fJ4A+qbniq30y6H1cLdDQAAxEGvVJvKR2Zr7PAs1foC2ucLqI/LLneaXXZriinueE9GnFcBMKpDj18eX1CeuoDcaXa5nTaOXwCAbhEMhbW0qqbZyUqHWrRiq4qH9FP5iGzD56dG/cK6gPZ5zdcvTMa4AoARMaYFAEg2hpiItmfPHs2YMUPZ2dm67bbbWiy3c+dOSdJhhx0mi6X5pJ2ZmdmobFeJRCIKhUKd/pxDP6MrPg89L0WSTWHVbt8qq9Wq/pl5slhSJHXNPoOew+/VfIhp17Bau3cwtytyMLE3H2uKpJSwvLur1ctu12Gugf/Nv8TYyDivMi+Ow51nxPwrJU/sUySlWlM0IN2uAen2Q7aY7/iVLDFNNsTVnIhr5xkl//pDEVUs2xxT2YrKTSorzFSKIu3+nkRjTZGsthRlpjuUme5otM0M+3yyxjWZcJw2J+LaNYySgw9iTMu8+E2bE3E1J+LaebHmX0NMRLv55pu1e/duPfbYY3K73S2W83q9kqS0tLQWy6SmpjYq21V8Pp9Wr17dpZ+5du3aLv08JIY1a9b0dBUQB/xezYeYdtwJJ5zQrd/X1TmY2JvTrl27eroKiAPOq8yJ43DHGD3/SsTejIipORFXcyKuHWOE/Ot0OpUxcJDWb/e0XVgNj3Pce6Betdu3yufzdaCW6A7ENflwnDYn4tpxRsjBrWFMy5z4TZsTcTUn4toxsebfhF/r86mnntJbb72lq666SsXFxa2WPbgKWkpKSpufG4lw5w8AAAAAAAAAwLysVqtqvf52vcfjDXT7SjNoH+IKAAAAIFEl9Ipon3zyie655x4VFRXpuuuua7N8r169JEl1dXUtlqmvr5ckuVyurqnkfzmdTg0dOrTTnxMKhaKzL0eOHEnH0CSIqzkRV/MhpsbUFTmY2JsTcTUn4mpOxNV46AOjJcTUnIirORFX4+lo/t21v30Tlvqmp2pA9pHt/h50L+JqfhynzYm4GhNj0GgJcTUn4mpOxLX7JPREtHvvvVd1dXVKS0vTTTfd1GjbunXrJEnPPPOM3nvvPZ100kkaN26cJOmrr75SJBJpdmW0nTt3SpIyMzO7tK4pKSldvqNarVZ2fhMiruZEXM2HmBpHV+dgYm9OxNWciKs5EVdjoA+MWBBTcyKu5kRcjaGj+dfttKsox6111W0/xrEoxy23087+YADENblwnDYn4mocjEEjFsTVnIirORHX+EroiWher1eS9MEHH+iDDz5otsyHH36oDz/8UDabTRMmTFBWVpZqamq0detWDR48uFHZUCikzZs3S1KX3LmNjguGwvKHwvL4gqr1+ZXhdMjttMlhtchmTfgnxgIAACQMzqsAAAAAtMZhtWhKaZ6mLV7dZtmppfly0I8wBOIKAAAAIBEl9ES0J598ssVt11xzjd58803NmTNH5513XvT10tJSPfPMM3r99dc1efLkRu9599139fXXX2vYsGHKzs6OW73ROq8/qKVVNZpXubnR3VpFOW5NKc3TmMIsuRwJvWsCAAAkBM6rAAAAALTFZrVoTGGWJpbkatGKbS2Wm1gySGWFmdzQYhDEFQAAAEAiMl3P45JLLpHVatW8efO0evXq6OvV1dW68847JUlTpkzpodrB6w9q9pIqTVu8usmS4euqPZq2eLVmL/lYXn+wh2oIAABgDJxXAQAAAIhViqRpZx6ley88WkU57kbbinLcuvfCozXtzCOV0jPVQwe5HDbNHF+oBy86rtm4PnjRcZo5fhg3KAEAAADoNqbrfQwbNkzTp0/Xfffdp4svvlijRo1SWlqaVq5cKa/XqwsvvFDjx4/v6WompWAorKVVNa3enSVJi1ZsVfGQfiofkc1dWgAAAM3gvAoAAABArIKhsN6oqtEtL6zTJcW5mn/piarzh7TX61dfl0Opdov+snKb7nypSr85ZwT9B4NxOWwqH5GtssJM7T1QL483oL7pqXI77XJYLcQSAAAAQLcy3UQ0SZo8ebLy8/P12GOPac2aNUpJSVF+fr4uuuginXvuuT1dvaTlD4VVsWxzTGUrKjexXDgAAEALOK8CAAAAEKuD/YdaX0Bzl21SReUmDc3urfRUm/bXB7Vhx9cKRxrK0n8wJpvVohRFVLt9q6xWqwZkHymr1drT1QIAAACQhAw7EW3u3Lmtbi8rK1NZWVk31Qax8PiCWr/d03ZBNTxOyuMLsmQ4AABAMzivAgAAABCrb/YfwhGpavvXzZal/2BsPp+vp6sAAAAAIMlxWxO6Ta3P367ynrpAnGoCAABgbJxXAQAAAIgV/QcAAAAAQHdhIhq6TYbT0a7y7jR7nGoCAABgbJxXAQAAAIgV/QcAAAAAQHdhIhq6jdtpU1GOO6ayRTluuZ0s/w4AADrH6XQqPT29p6vR5TivAgAAABAr+g8AAAAAgO7CRDR0G4fVoimleTGVnVqaL4eV3RMAAHRMMBRWfSiijIGDFErP1K79fnn9QQVD4Z6uWpfgvAoAAABArOg/AAAAAAC6C7c2odvYrBaNKczSxJJcLVqxrcVyE0sGqawwUzYGPAAAQAd4/UEtrarRvMrNWlftib5elOPWlNI8jSnMksth7NNgzqsAAAAAxIr+AwAAAACguxj7ChwMx+Wwaeb4QhUP6a+Kyk1NLg5PLc1XWWGm4S8OAwCAnuH1BzV7SVWzF1fWVXs0bfFqTSwZpJnjhxn+fIPzKgAAAACxov8AAAAAAOgO9CrR7VwOm8pHZKusMFMeX1CeuoDcaXa5nTY5rBbuuAMAAB0SDIW1tKqm1Tv8JWnRiq0qHtJP5SOyDX/ewXkVAAAAgFgd2n/Ye6BeHm9AfdNT5Xba6T8AAAAAALoEE9HQI2z/HdhwOWzKzkjr6eoAAAAT8IfCqli2OaayFZWbTPPIGc6rAAAAAMTKZrUoRRHVbt8qq9WqAdlHymq19nS1AAAAAAAmwUQ0AAAAmILHF9T67Z62C6rhMZ0eX5DHzgAAAABISj6fr6erAAAAAAAwIeMvAQEAAABIqvX521XeUxeIU00AAAAAAAAAAACA5MNENAAAAJhChtPRrvLuNHucagIAAAAAAAAAAAAkHyaiAQAAwBTcTpuKctwxlS3Kccvt5LGcAAAAAAAAAAAAQFdhIhoAAABMwWG1aEppXkxlp5bmy2HlVBgAAAAAAAAAAADoKiwDAQAAAFOwWS0aU5iliSW5WrRiW4vlJpYMUllhpmwmmYgWDIXlD4Xl8QVV6/Mrw+mQ22mTw2oxTRsBwOg4VgMA0P38wZACoYg8voD2egPq67LL7bTLbk2Rw2bt6eoBAAAAgCkxEQ0AAACm4XLYNHN8oYqH9FdF5Satq/ZEtxXluDW1NF9lhZlyOcxxGuz1B7W0qkbzKjc3aeuU0jyNKcwyTVsBwKg4VgMA0P0O1Af1xvoaLXinaf6dNDpPY4dnqVcq+RcAAAAAuho9LQAAAJiKy2FT+YhslRVmau+Benm8AfVNT5XbaTfVyjNef1Czl1Q1u/rbumqPpi1erYklgzRz/DAmOABAD+FYDQBA9/PWB3XXy1X6y6rm8+/0p1frkuJczRxfyGQ0AAAAAOhi5rgKBwAAABzCZrUo1Zqi2u1bZdlfowHpDrkcNtNMQguGwlpaVdPqI0gladGKrXqzaqeCoXA31QwAcBDHagAAup8/GNLr62uanYR2qKdWbtPS9TXyB0PdVDMAAAAASA7muBIHAAAANMPn82n//v09XY0u5w+FVbFsc0xlKyo3yc/kBgDodhyrAQDofoFQRPP/GVv+nf/OZgVDkTjXCAAAAACSCxPRAAAAAIPx+IJav90TU9l11R55fME41wgA8E0cqwEA6H4eX6Bd+be2LhDnGgEAAABAcmEiGgAAAGAwtT5/u8p7uLgCAN2OYzUAAN1vr7d9+XRfO8sDAAAAAFrHRDQAAADAYDKcjnaVd6fZ41QTAEBLOFYDAND9+rral0/7tLM8AAAAAKB1TEQDgE5wOp1KT0/v6WoAAJKM22lTUY47prJFOW65nbY416h7kX8BczHrbzrZj9UAAPQEt9PevvxrsongZj2vAgAAAGAcTERDjwiGwvL6g9pRW6cNOzzaUVsnrz+oYCjc01UDYhIMhVUfiihj4CCF0jO1a7+ffRgA0G0cVoumlObFVHZqab4cVnOc9pN/AXMx+286WY/VAAD0JLs1RZNGx5Z/J4/Ok92aEucadQ+zn1cBAAAAMA5ut0W38/qDWlpVo3mVm7Wu2hN9vSjHrSmleRpTmCWXg10TiYt9GADQ02xWi8YUZmliSa4WrdjWYrmJJYNUVpgpmwkmN5B/AXNJht90Mh6rAQDoaQ6bVWOHZ+niUbn6y6qW8+8lxbkaMzxLDpu1G2sXH8lwXgUAAADAOOh9oFt5/UHNXlLV7CD8umqPpi1erYklgzRz/DA6x0hI7MMAgEThctg0c3yhiof0V0XlpiYXHKaW5qusMNMU+Yj8C5hLMv2mk+lYDQBAouiVatPNZxeqeEg/zX+n6eSsyaPzNGZ4lnqlGj//JtN5FQAAAABjoOeBbhMMhbW0qqbVO8EladGKrSoe0k/lI7K5IxwJhX0YAJBoXA6bykdkq6wwUx5fUJ66gNxpdrmdNjmsFlPkIfIvYC7J+JtOhmM1AACJpleqTeUjszV2eJZq6wLa5w2oj8sud5pddmuKKVZCS8bzKgAAAACJj14Huo0/FFbFss0xla2o3CR/KBznGgHtwz4MAEhENqtFLodN2RlpKsjqreyMNLkcNtNcYCD/AuaSrL9psx+rAQBIRA6bVa5UmwZmOFU40K2BGU71SrWZYhKalLznVQAAAAASGyOe6DYeX1Drt3vaLqiGZcM9vmCcawS0D/swAADdj/wLmAu/aQAAgK7BeRUAAACARMRENHSbWp+/XeU9dYE41QToGPZhAAC6H/kXMBd+0wAAAF2D8yoAAAAAiYiJaOg2GU5Hu8q70+xxqgnQMezDAAB0P/IvYC78pgEAALoG51UAAAAAEhET0dBt3E6binLcMZUtynHL7bTFuUbdy+l0Kj09vaergU5I9n0YAICeQP4FzIXfNAAAQNfgvAoAAABAImIiGrqNw2rRlNK8mMpOLc2Xw2qO3TMYCqs+FFHGwEEKpWdq136/vP6ggqFwT1cN7ZSs+zAA8wiGwvL6g9pRW6cNOzzaUVtHTkLCS9b8y+8VZpWsv2kAAICuxnkVAAAAgETELTDoNjarRWMKszSxJFeLVmxrsdzEkkEqK8yUzQQdY68/qKVVNZpXuVnrqj3R14ty3JpSmqcxhVlyOfgZGkUy7sMAzIOcBKNKxvzL7xVmloy/aQAAgHjgvAoAAABAIuLqBbqVy2HTzPGFKh7SXxWVm5pcWJtamq+ywkxTXFjz+oOavaSq2UGAddUeTVu8WhNLBmnm+GGmaG+ySKZ9GIB5kJNgdMmUf/m9Ihkk028aAAAgnjivAgAAAJBo6H2g27kcNpWPyFZZYaY8vqA8dQG50+xyO21yWC2muDMrGApraVVNq3eiSdKiFVtVPKSfykdkm6LdyeLQfXjvgXp5vAH1TU+V22k3zT4MwDzISTCLZMi//F6RTJLhNw0AANAdOK8CAAAAkEjogaBH2KwWuRw2ZWekqSCrt7Iz0uRy2EzTKfaHwqpYtjmmshWVm+QPheNcI3Q1m9WiVGuKardvlWV/jQakO0y1DwMwD3ISzMTs+ZffK5KN2X/TAAAA3YXzKgAAAACJghXRgDjw+IJav93TdkE1PGLJ4wuyPLpB+Xy+nq4CALSKnAQzMmv+5feKZGXW3zQAAEB347wKAAAAQE/jdhggDmp9/naV99QF4lQTAECyIycBxsHvFQAAAAAAAAAAGBkT0YA4yHA62lXenWaPU00AAMmOnAQYB79XAAAAAAAAAABgZExEA+LA7bSpKMcdU9miHLfcTh6pBACID3ISYBz8XgEAAAAAAAAAgJExEQ2IA4fVoimleTGVnVqaL4eVnyIAID7ISYBx8HsFAAAAuk4wFJbXH9SO2jpt2OHRjto6ef1BBUPhnq4aAAAAAJgWt9ADcWCzWjSmMEsTS3K1aMW2FstNLBmkssJM2biICACIE3ISYBz8XgEAAICu4fUHtbSqRvMqN2tdtSf6elGOW1NK8zSmMEsuB5dHAAAAAKCr0dMC4sTlsGnm+EIVD+mvispNTQY8ppbmq6wwkwEPAEDckZMA4+D3CgAAAHSO1x/U7CVVzd7csa7ao2mLV2tiySDNHD+M82oAAAAA6GL0soA4cjlsKh+RrbLCTO09UC+PN6C+6alyO+1yWC2sYgEA6DaH5iSPLyhPXUDuNLvcThs5CUgw/F4BAACAjgmGwlpaVdPqCsOStGjFVhUP6afyEdmcXwMAAABAF2IiGhBnNqtFKYqodvtWWa1WDcg+UlartaerBQBIQrb/TmBxOWzKzkjr6eoAaAW/VwAAAKD9/KGwKpZtjqlsReUmHnkPAAAAAF2MiWhAN/H5fD1dBQAAAAAAAAAwLY8vqPXbPW0XVMNjOj2+II/nBAAAAIAuxK0+AAAAAAAAAADA8Gp9/naV99QF4lQTAAAAAEhOTEQDAAAAAAAAAACGl+F0tKu8O80ep5oAAAAAQHJiIhoAAAAAAAAAAEnE6XQqPT29p6vR5dxOm4py3DGVLcpxy+3ksZwAAKBzzHpeBQAdxUQ0AECLgqGwvP6gdtTWacMOj3bU1snrDyoYCvd01QAAAADD4LwaAJAogqGw6kMRZQwcpFB6pnbt95sqJzmsFk0pzYup7NTSfDmsXCIBAAAdY/bzKgDoKG73AQA0y+sPamlVjeZVbta6ak/09aIct6aU5mlMYZZcDtIIAAAA0BrOqwEAiSIZcpLNatGYwixNLMnVohXbWiw3sWSQygozZWMiGgAA6IBkOK8CgI6ilwUAaMLrD2r2kipNW7y60Qm0JK2r9mja4tWaveRjef3BHqohAAAAkPg4rwYAJIpkykkuh00zxxfqwYuOa/KYzqIctx686DjNHD+Mi8MAAKBDkum8CgA6gp4WAKCRYCispVU1rd41KkmLVmxV8ZB+Kh+Rzd2jAAAAwDdwXg0ASBTJmJNcDpvKR2SrrDBTHl9QnrqA3Gl2uZ02OawWw7cPAAD0jGQ8rwKA9uKoBwBoxB8Kq2LZ5pjKVlRukp9n3QMAAABNcF4NAEgUyZqTbFaLXA6bsjPSVJDVW9kZaXI5bFwMBgAAHZas51UA0B70uAAAjXh8Qa3f7mm7oBqWGPb4WFoYAAAA+CbOqwEAiYKcBAAA0DU4rwKAtjERDQDQSK3P367ynrpAnGoCAAAAGBfn1QCAREFOAgAA6BqcVwFA25iIBgBoJMPpaFd5d5o9TjUBAAAAjIvzagBAoiAnAQAAdA3OqwCgbUxEAwA04nbaVJTjjqlsUY5bbqctzjUCAAAAjIfzagBAoiAnAQAAdI1vnldZLSkqHNhbJw3uq8KBvWW1pES3cV4FIFkxEQ0A0IjDatGU0ryYyk4tzZfDSioBjCIYCsvrD2pHbZ027PBoR22dvP6ggqFwT1cNAADT4bwaAJAoyEkAAABd4+B5VYbTrmvPOFL/nHGGHrroeM34zjA9dNHxqrzx27r2jCOV4bRzXgUgaTEFFwDQiM1q0ZjCLE0sydWiFdtaLDexZJDKCjNl4yQaMASvP6ilVTWaV7lZ66o90deLctyaUpqnMYVZcjk4NQQAoKtwXg0ASBTkJAAAgK5hs1o0tjBLJUP6q3LjLk1+4v0m4+2XnzJYb1x/unqn2TivApCUuNoIAGjC5bBp5vhCFQ/pr4rKTU1OoqeW5qusMJNJK4BBeP1BzV5S1ewFh3XVHk1bvFoTSwZp5vhh/K4BAOhCnFcDABIFOQkAAKBrRCQ98NYnLY633/jcmuh4OwAkI3qVAIBmuRw2lY/IVllhpjy+oDx1AbnT7HI7bXJYLdzFARhEMBTW0qqaVu96l6RFK7aqeEg/lY/I5vcNAEAX4rwaAJAoDs1Jew/Uy+MNqG96qtxOOzkJAAAgBoy3A0DbmIgGAGiR7b+DkC6HTdkZaT1dHQAd4A+FVbFsc0xlKyo38RgWAADigPNqAECisFktSlFEtdu3ymq1akD2kbJarT1dLQAAAENgvB0A2sZRDwAAwMQ8vqDWb/e0XVANy4Z7fME41wgAAAAA0NN8Pp/279/f09UAAAAwFMbbAaBtTEQDAAAwsVqfv13lPXWBONUEAAAAAAAAAADjYrwdANrGRDQAAAATy3A62lXenWaPU00AAAAAAAAAADAuxtsBoG1MRAMAADAxt9Omohx3TGWLctxyO21xrhEAAAAAAAAAAMbDeDsAtI2JaAAAACbmsFo0pTQvprJTS/PlsHJ6aDTBUFhef1A7auu0YYdHO2rr5PUHFQyFe7pqAAAAANBj/MGQDtQHtX2fT+urPdq+z6cD9UH5g6GerhoAADAoxtsBoG1MwQUAADAxm9WiMYVZmliSq0UrtrVYbmLJIJUVZspGx9hQvP6gllbVaF7lZq2r9kRfL8pxa0ppnsYUZsnl4JQfAAAAQHI5UB/UG+trtOCdpn2lSaPzNHZ4lnql0lcCAADtw3g7ALSNnhYAAIDJuRw2zRxfqOIh/VVRuanJIPzU0nyVFWYyYclgvP6gZi+panbAY121R9MWr9bEkkGaOX4YsQUAAACQNLz1Qd31cpX+sqr5vtL0p1frkuJczRxfyGQ0AADQboy3A0DrOPoBAAAkAZfDpvIR2SorzJTHF5SnLiB3ml1up00Oq4U7swwmGApraVVNq3fdSdKiFVtVPKSfykdkE2MAAAAApucPhvT6+ppmJ6Ed6qmV2zRqcD+Vj8yWw2btptoBAACzOHS8fe+Benm8AfVNT5XbaWe8HUDS4wgIAACQJGxWi1wOm7Iz0lSQ1VvZGWlyOWx0ig3IHwqrYtnmmMpWVG6SPxSOc40AAAAAoOcFQhHN/2dsfaX572xWMBSJc40AAIBZ2awWpVpTVLt9qyz7azQg3cF4OwCIiWgAAACA4Xh8Qa3f7mm7oBoePePxBeNcIwAAAADoeR5foF19pdq6QJxrBAAAzM7n82n//v09XQ0ASBhMRAMAAAAMptbnb1d5DxdXAAAAACSBvd729X32tbM8AAAAAKB1tp6uQKxeeeUVPfXUU1q3bp0ikYiOOOIIjR8/XldccYXS0tKalH/vvfe0YMECffzxx6qrq1NeXp5+9KMf6YILLlBKSkoPtAAAAADoGhlOR7vKu9PscaoJAAAAACSOvq729X36tLM8AAAAAKB1hlgR7cEHH9T06dP173//WyNGjNDJJ5+sPXv26A9/+IMuuOAC1dbWNiq/ePFiXXHFFfrXv/6l4cOHq7i4WJs2bdKsWbM0c+bMHmoFAAAA0DXcTpuKctwxlS3KccvtNMz9JwAAAADQYW6nvX19JW7aAQAAAIAulfAT0d5//3099NBDcrvdev755/Xkk0/qz3/+s9544w2NHj1an3zyif7whz9Ey2/ZskV33nmn0tPT9cwzz+jhhx9WRUWFlixZotzcXD3//PN69dVXe65BAAAAQCc5rBZNKc2LqezU0nw5rAl/2g8AAAAAnWa3pmjS6Nj6SpNH58lu5ekpAAAAANCVEv6K1N/+9jdJ0qRJkzRs2LDo6y6XS9OmTZMkLVu2LPr6woULFQqFdNVVV2n48OHR13NycnTrrbdGywAAAABGZbNaNKYwSxNLclstN7FkkMoKM2VjIhoAAACAJOCwWTV2eJYuHtV6X+mS4lyNGZ4lh83aTTUDAAAAgOSQ8M/ouf3223XllVdqwIABTbaFQiFJktX6v87i22+/LUk666yzmpQ/5ZRT1Lt3b61du1Y1NTXKysqKU60BAACA+HI5bJo5vlDFQ/qronKT1lV7otuKctyaWpqvssJMuRwJf8oPAAAAAF2mV6pNN59dqOIh/TT/nc1N+kqTR+dpzPAs9UqlrwQAAAAAXS3he1o2m035+flNXt++fbvuvvtuSdJ5550nSfrqq6+0e/du2e125eU1XX7barUqLy9PH330kTZs2MBENAAAABiay2FT+YhslRVmyuMLylMXkDvNLrfTJofVwkpoAAAAAJJSr1Sbykdma+zwLNXWBbTPG1Afl13uNLvs1hRWQgMAAACAOEn4iWjf9Nvf/lYfffSRPvroI6WkpOjKK6/U1KlTJUk7d+6UJB122GGyWJq/6JaZmdmobFeJRCLRFdo649DP6IrPQ2IgruZEXM2HmHaNQ1cq7Q5dkYOJvTklS1xTJKVaUzQg3a4B6fZDtnTN+WmiSZa4Jhvi2nlGzL8SsTcjYmpOxNWciGvnkX8TmzVFstpSlJnuUGa6o9E2M7Y7WeKaTIipORHXrmHEHEzszYm4mhNxNSfi2nmx5t+USCQSiXNdutRJJ50kj6dhKW2Hw6Fx48ZpxowZyszM1Pvvv69LLrlEQ4YM0auvvtrs+3/xi1/opZde0s0336xLL7200/WpqqqS1+vt9OcAAGAWJ5xwQrd8DzkYAID/If8CAND9yL8AAPQMcjAAAN0v1vxruGf1/P3vf9dHH32kZ599Vscff7z+8Y9/6KKLLpLX642ugpaSktLm5xhs/h0AAAAAAAAAAAAAAAAAJCzDPZpz4MCBkqSjjz5aCxYs0Pnnn6+NGzfqmWee0cknnyxJqqura/H99fX1kiSXy9Wl9XI6nRo6dGinPycUCmnt2rWSpJEjR3b70rKID+JqTsTVfIipMXVFDib25kRczYm4mhNxNR76wGgJMTUn4mpOxNV4yL9oDXE1H2JqTsTVmBiDRkuIqzkRV3Mirt3HcBPRDuVwOFReXq6NGzdq/fr1OueccyRJX331lSKRSLMro+3cuVOSlJmZ2aV1SUlJ6fId1Wq1svObEHE1J+JqPsTUOLo6BxN7cyKu5kRczYm4GgN9YMSCmJoTcTUn4moM5F/EiriaDzE1J+JqHIxBIxbE1ZyIqzkR1/hK+EdzPvDAA5o+fbp27NjR7HaHwyFJCgaD6tOnj7KysuT3+7V169YmZUOhkDZv3ixJXXLnGAAAAAAAAAAAAAAAAADAABPR3n33Xb3yyit6+eWXm91eWVkpqWHpPEkqLS2VJL3++uvNftbXX3+tYcOGKTs7O041BgAAAAAAAAAAAAAAAIDkkvAT0S655BJJ0kMPPaQ1a9ZEXw8EArr33nu1atUq9e/fX+eff360vNVq1bx587R69epo+erqat15552SpClTpnRfAwAAAAAAAAAAAAAAAADA5Gw9XYG2fP/739f777+vp59+WhMmTNBxxx0nt9utqqoq7dixQ3369NGf//xnud1uSdKwYcM0ffp03Xfffbr44os1atQopaWlaeXKlfJ6vbrwwgs1fvz4Hm4VAAAAAAAAAAAAAAAAAJhHwk9Ek6Q77rhDJSUlWrx4sdatWye/36+cnBxddtlluuqqq5SVldWo/OTJk5Wfn6/HHntMa9asUUpKivLz83XRRRfp3HPP7aFWAAAAAAAAAAAAAAAAAIA5pUQikUhPV8LIVq9erVAopJSUFDmdzk5/XiQSkc/nkyQ5nU6lpKR0+jPR84irORFX8yGmXSctLU1DhgyJ63d0ZQ4m9uZEXM2JuJoTce0aRsu/ErE3I2JqTsTVnIhr1yD/IlEQV/MhpuZEXLuO0XIwsTcn4mpOxNWciGvXiCX/GmJFtEQWDoclNey0Xq+3Sz/74I8A5kJczYm4mg8xTXzxysHE3pyIqzkRV3MiromNPjDag5iaE3E1J+Ka2Mi/aC/iaj7E1JyIa+JjDBrtQVzNibiaE3GNLyaidZLdblcgEJDFYlFqampPVwcAgISQlpYW9+8gBwMA0Bj5FwCA7kf+BQCgZ5CDAQDofrHkXx7NCQAAAAAAAAAAAAAAAADoFEtPVwAAAAAAAAAAAAAAAAAAYGxMRAMAAAAAAAAAAAAAAAAAdAoT0QAAAAAAAAAAAAAAAAAAncJENAAAAAAAAAAAAAAAAABApzARDQAAAAAAAAAAAAAAAADQKUxEAwAAAAAAAAAAAAAAAAB0ChPRAAAAAAAAAAAAAAAAAACdwkQ0AAAAAAAAAAAAAAAAAECnMBENAAAAAAAAAAAAAAAAANApTEQDAAAAAAAAAAAAAAAAAHQKE9EAAAAAAAAAAAAAAAAAAJ3CRDQAAAAAAAAAAAAAAAAAQKcwEQ0AAAAAAAAAAAAAAAAA0ClMRAMAAAAAAAAAAAAAAAAAdAoT0QAAAAAAAAAAAAAAAAAAncJENAAAAAAAAAAAAAAAAABApzARDQAAAAAAAAAAAAAAAADQKUxEAwAAAAAAAAAAAAAAAAB0ChPRAAAAAAAAAAAAAAAAAACdwkQ0AAAAAAAAAAAAAAAAAECnMBENAAAAAAAAAAAAAAAAANApTEQDAAAAAAAAAAAAAAAAAHQKE9EAAAAAAAAAAAAAAAAAAJ3CRDQAAAAAAAAAAAAAAAAAQKcwEQ0AAAAAAAAAAAAAAAAA0ClMRAMAAAAAAAAAAAAAAAAAdAoT0QAAAAAAAAAAAAAAAAAAncJENCCJPf/88xo6dKhOP/30bnnfgw8+qKFDh+qiiy5q1/vipa6uTgsXLtSFF16o448/XiNGjNAZZ5yhGTNm6OOPP27xfT/+8Y81dOjQVv+rqqpq9r3Lly/XT3/6U5122mkaMWKETjvtNN1www3atGlTzPXev3+/zjjjDA0dOlQrV65ssdyaNWv0i1/8Qt/+9rc1YsQInXDCCZowYYKeeOIJ+f3+mL8PANC1kj3/StK2bdt06623qqysTCNHjtRJJ52kq666SpWVlS2+Z9++ffrjH/+oH/zgBzruuOM0cuRIjR07Vrfddps+//zzFt+3d+9e3XPPPRo3bpxGjhyp448/Xj/60Y/09NNPKxwOt/i+TZs2adasWRozZoxGjhyp4447Tueee67mzp2r/fv3x9zWn//85xo6dKi2bt0a83sAAF2P/Nux/Ovz+TR37lx973vf0zHHHKNjjz1W5557rhYsWNCufmUwGNT555+voUOH6vnnn4/5fbH2fz/55BPdeOONGj16tEaMGKGSkhJNmTJFy5cvj/m7AADxQQ42Rg7esGGDbrjhBo0ePVojR47UWWedpVtvvVWfffZZq5+/fPlyTZ06VcXFxRoxYoTOPPNM3Xrrrdq8eXPMdQQAdL1kzb+/+tWv2ryGe+h/39TRMegdO3Zo9uzZKi8v1zHHHKNjjjlGZ599tn73u99p9+7dLb6vo/mXa8BIdLaergAA9ISvvvpKl112mT799FNJUlZWljIyMrR161a9+OKLWrJkie666y794Ac/aPLeDRs2SJKOOeYYWa3WZj/f5XI1ee3ee+/VggULJEkDBgxQXl6etmzZon/84x96/fXX9ec//1mnnnpqm3W/6667VF1d3WqZxx9/XL/97W8VDoeVlpamvLw87d27V6tXr9bq1av10ksv6ZFHHlF6enqb3wcAQFdaunSprr/+evn9fqWnp+vII4/U559/rv/7v//T//3f/2natGm69tprG71n06ZNuuKKK1RTU6OUlBQdfvjhSktL09atW7V48WL9/e9/10MPPaRTTjml0fu+/PJLTZw4UdXV1bLZbBo8eLC8Xq8+/PBDffjhh3r77bf14IMPym63N3rfK6+8ohkzZsjv98tut0ffV1VVpfXr1+vFF1/U448/ruzs7FbbunjxYr388std84cDAKATOpJ/PR6PfvzjH+vjjz9WSkqKcnNzJSmaD1977TU99thjMfUrKyoq9J///Kfd9Y6l/1tZWamf/exnqq+vl9PpVH5+vnbs2KFly5Zp2bJl+vnPf64pU6a0+7sBAOgKRsjBL774om6++WYFAgE5HA4dddRR2rNnj55++mn97W9/0913363x48c3ed9DDz2kBx98UJLUp08fHXXUUfr888/19NNP64UXXtDvfvc7jRs3LtY/FQAAnTZ48GAdf/zxrZZZu3atAoFANL8e1NEx6Pfff18/+clP5PF4ZLValZubq3A4rC1btujTTz/Viy++qIULF2rYsGGN3tfR/Ms1YBhCBEDS+utf/xopKCiIjB49ul3v83g8kU8//TSydevWdr3vgQceiBQUFER+9KMftet98XDFFVdECgoKImPHjo189NFH0df3798fueWWWyIFBQWRoqKiyIYNGxq978svv4wUFBREjjnmmEgoFIr5+5599tnoZ/71r3+NhMPhSCQSiezduzcyefLkSEFBQeTkk0+OHDhwoNXPefvttyMFBQXR/1asWNGkzPvvvx8ZOnRopKCgIHLPPfdE6uvro9uWL18eOe200yIFBQWR66+/Pub6AwC6TjLn308//TRSVFQUKSgoiNx5550Rr9cbiUQikUAgELn//vsjBQUFkaFDhzbKzYFAIFJeXh4pKCiInH/++ZHNmzdHt3311VeRn/zkJ5GCgoLICSecEPnqq68afd+ll14aKSgoiJx99tmRLVu2RF9/8803IyNHjowUFBRE5s6d2+g927Zti4wYMSJSUFAQmTFjRsTj8US3rV+/PlqXCRMmtNrWRx99NJqPCwoKIp999lm7/14AgK5D/m1f/o1EIpGbbropUlBQEDnttNMia9asib7+wQcfREpKSiIFBQWRm2++uc3vX79+ffT7CwoKIn/9619jqncs/d/a2trIqFGjIgUFBZGf/exn0bwdDAYjf/zjH6Pv/de//hXTdwIAuh45OLFz8H/+859omSlTpkR2794d3fbCCy9EioqKIkOHDo188MEHjd733nvvRT93wYIFkWAwGIlEIpH6+vrIXXfdFSkoKIiMHDkysn379tj/YACALpPM+bc1zz//fKSgoCBy7LHHRj799NPo6x0dg66trY3m5quuuipSU1MT3bZt27bIj370o0hBQUHkzDPPjNTV1UW3dTT/cg0YRsGjOQG0W+/evZWfn99kprhRVFVV6d1335XFYtF9992no48+OrqtV69euv3223XiiScqEAjo8ccfb/Teg4/sPPLII2WxxHYIra+v1+9+9ztJ0syZM3XeeecpJSVFUsOdYvfee6969eql3bt366233mrxc/bt26dZs2bJ6XS2+n0PP/ywIpGIzjjjDN14441yOBzRbSUlJbr77rslSS+//LK2b98eUxsAAD3P6PlXku6++24FAgGVl5c3ymk2m03Tp0/XSSedpEgkoueeey76nmXLlmnTpk1yuVx68MEHNWTIkOi2/v376/7779egQYP09ddf6+mnn45u2759u1asWCFJuuOOOzR48ODotjPPPFNXX321JDX6LknR5csLCws1e/Zs9e7dO7qtsLBQDz74oKxWqz788EO9//77Tdq4c+dOTZs2TXPmzFEkEunEXwsAkAiSNf/6/f7oqp4zZszQyJEjo9uOP/543XDDDZKkf/zjH60+9sPv92vGjBkKhUKN+qZtibX/+/bbb2vfvn1yu926++67o3nbarVq2rRpOumkkyRJf/3rX2P+bgBAYiAHd08O/vOf/6xAIKCCggI98MAD6tevX3TbD37wA11xxRWKRCK64447Gr1v4cKFkqTvfve7uvrqq6NPDnE4HLrpppuUn5+v+vp6/e1vf4vpbwUASAxmyL8t2bJlSzSf3XzzzcrPz49u6+gY9PPPP689e/YoMzNTf/jDH5SZmRnddsQRR+hPf/qTMjIy9MUXX+jVV1+Nbuto/uUaMIyCiWgAks7KlSslSbm5uY068gelpKTozDPPlNSwPOuhDk5EO+qoo2L+vrfeekv79u3T4MGDNWHChCbbe/furVtuuUW/+tWvGp3YfNPtt9+uXbt26frrr2/1+w6277vf/W6z208++WT16tVLkjr0aBQAADpi165d+r//+z9ZLJbowPk3TZs2Tb/4xS90xhlnRF87OJns+OOP18CBA5u8JzU1Vaeddpqkxnl7x44d0f//5rLnkqLnAIeWk/6XR8vLy5t9BHd+fr7y8vIkNc2jb7zxhsaNG6fXXntNGRkZuvXWW5ttJwAA3aWj+Xffvn2qq6uT1Hoeraur0549e1r8/gceeEAbN27Uj3/8Yw0YMCDmesfa/z2Yx3Nzc5udtHawngzAAwC6mxFycCgU0rvvvitJuvTSS5udsHbZZZdJari5++DYuNTQRz/zzDN1/vnnN3lPSkqKCgoKJKnNR2wDANBdZs2aJa/Xq1NPPVUXXHBBo20dHYM+OJZ8xhlnNPsozH79+um4445r9L7O5F+uAcMobD1dAQAtq6mp0YIFC7Rq1Sp98cUXikQiGjhwoE455RRdfvnl+ta3vtXs+9566y09++yzWrdunfbs2aM+ffroxBNP1NVXX60RI0Y0+x6v16tHHnlES5Ys0RdffCGn06kRI0boyiuv1Kmnntqo7PPPP6+bbrpJWVlZ+uc//9loWzgc1t/+9jc9++yz+vTTTyU1JO2f/exnHfobDB06NOayhx9+eKsrih105plnKjMzU3a7vcUyB1cwCYfDjV4/mOzbU6/33nsv+r3NXdCWpHPPPbfVz3jllVe0ZMkSnXTSSbr00ks1e/bsZsuFw2Hdf//92rFjh0488cRmyxy6OksoFIqlCQCQVMi/8cm/K1asUCgU0ogRI1r8G44aNUqjRo1q9NoPf/hDHXPMMerfv3+Ln91c3s7JyYn+//r165vkxQ0bNjQpJzXcDffFF1/omGOOafP7vplHP/74Y/l8Pn3ve9/TL3/5S9XX17f4GQCAxsi/iZV/+/fvr9TUVNXX12v9+vVNbsY6mEdTU1NbzNGrV6/WI488osGDB+vnP/+5li5dGkvTYu7/SopeINi6dau8Xq9cLlez9Tz88MNj+m4ASEbk4OTNwXv37pXX65WkFmN22GGHye12y+Px6KOPPopOjrv22mtbaHlDX7mqqkqSNGjQoBbLAUAyI//GJ/+2ZMmSJXr//fdlt9s1a9asJts7Ogb9k5/8ROPGjWt1oZFvvq+j+ZdrwDASJqIBCWrbtm360Y9+pN27d8vlckVPOD777DM9+eST+tvf/qYnn3xSw4cPj74nFArppptu0osvvihJGjBggAoKCvT555/rlVde0RtvvKG5c+eqtLS00XfV1dVpwoQJ2rhxowYOHKghQ4bos88+0//93//p3Xff1Zw5c9qcKCU1LPd9/fXXRzu2ubm5Sk9P13vvvaf33nuv2dXH2nL88cfHXDbWu6tzc3PbXFL24PKoRx55ZKPXD3b0v/Wtb+npp5/W8uXLtWfPHh122GE6+eST9YMf/KDJzPWD7znqqKMUiUT0xhtv6K233tKOHTuUkZGh0047Teecc06LE+O++uor3X777XK5XJozZ070sZ7NsVgsOv3001tt2zvvvKMDBw5E6wQA+B/yb4N45N9D86EkrVmzRn//+9+1ZcsW2e12HXvssfrhD3/YaBlySSooKIjeSd0cv98fHYQ4NG9nZWWprKxMb775pm6//Xb96U9/iub/5cuXa968eZKkyy+/vNHnFRcXq7i4uMXv++STT6IDLd88TzjxxBP14osvRgdRvvjiixY/BwDwP+TfBomUf61WqyZMmKAnnnhC9913n4488kgVFRVJapjg/bvf/U6SNHHixGb7snV1dfrlL3+pSCSiOXPmKC0tLab6tqf/K0ljxoxRZmamdu7cqZkzZ+o3v/mN0tPTFYlE9Oijj+rdd9+V3W7XxIkTY/p+AEg25OAGyZqDD82zNlvLlwuDwaAk6csvv2yz3du2bdO9996rzz77TAMGDGh2xTQASHbk3wbxyL/N8fv90fz5wx/+MPq0i0N1dAz66KOP1tFHH93i+/bs2aNVq1Y1el9H8y/XgGEkTEQDEtT999+v3bt3a9y4cZozZ050Gc2vvvpKP/3pT/Xhhx/qvvvu08MPPxx9z8MPP6wXX3xRTqdTd911l8aPH6+UlBTV19drzpw5Wrx4saZPn65ly5YpIyMj+r7a2lqlpKRo/vz50ROUPXv26JprrtGHH36oe++9V+ecc06bA8APP/ywli5dqt69e+uBBx7QKaecIqlhVv8NN9wQTbTtsXjx4na/p7OeeeaZ6PKo55xzTvR1r9erbdu2SZJmzJgRTeQHvfzyy1q4cKHmzp3b6LniB5cft9lsmjhxot5///1G73v11Vf1xBNPaP78+c0u93rLLbdo7969uuWWW3TEEUd0qm0HDhzQnDlzJDXMsj+0ngAA8u9B8ci/B/Nh37599Zvf/EZPPvlko+1vv/22HnnkET3wwAMqKSmJ+XP/9Kc/aceOHUpJSdH3v//9Rtt+97vf6eabb9arr76q8vJyDR48WHV1dfriiy/kdrs1c+ZMXXLJJTF/VygU0u233y6pYaLbySef3Gj7N/8NAIgN+bdBouXfX/7ylwqFQnr66ad1wQUXKDc3VykpKdq6dascDoemTp2q6667rtnvPXgB+sorr2zXxYX29n9dLpcee+wx3XjjjXrllVdUWVmpQYMGaefOndq9e7cGDx6s2267TYWFhTHXAQCSCTm4QbLm4L59+yo9PV379+9XVVVVsxesv/jii+iqLbW1tS1+1u9//3stWbJEX375pcLhsI477jjddddd6tu3b6t1AIBkRP5t0F3XgF988UVVV1fLZrPpqquu6tBntDYG3Zq77rpLPp9PTqdT48aNk9S1+fdQXANGIrH0dAUANO/gIyC///3vR09ApIalOG+++WaNHj260Yxrv9+v+fPnS2qYJHX22WdHTxpSU1N16623asiQIfJ6vXrllVeafN+sWbMazZLv16+fZsyYIanhxOezzz5rtb6BQCB6QnTzzTdHT0Ckhgu1Dz30kPr06dOOv0DPeO+993TnnXdKkkaPHq1vf/vb0W0bN26MLpuam5urBQsW6N///rc++OADzZ07V4MHD9Znn32mq666Snv37o2+7+CEtTlz5mjt2rWaOXOmli9frtWrV6uiokKHH364Nm7cqClTpsjv9zeqz/PPP6+33npLxcXF7bpQ3hy/36/p06dry5YtslqtmjlzZqc+DwDMiPwbPwfz4QsvvKAnn3xSF110kZYuXaq1a9fqr3/9q4qLi1VbW6trrrmmzXYf9MILL0RXNpswYUKT5dxTUlI0bNgwZWRkKBgM6tNPP42uUta7d++YV2eRGpY1//Wvf61//etfkhouDHxzFVQAQMeQf+Ons/k3Ly9PmZmZCofD+uyzz7RlyxaFw2H16tVL6enpzT7qY+XKlVq0aJHy8vI0ffr0mOva0f5vWlqajj32WFmtVnm9XlVVVWn37t2SGmLb1gUVAEhm5OD4MUIOtlgs0fHvhQsXNhmblqSKioro/wcCgRY/a/ny5fr888+j4+fbt2/XsmXL2qwDACQj8m/3euKJJyRJZ599tg4//PB2v7+tMeiWzJ07Vy+99JIk6Zprrok+9rMr8+9BXANGomEiGpCgBg0aJKnhDqalS5eqrq4uum3kyJFauHChbrrppuhr77//vr7++mvZ7Xadd955TT7PYrFo/vz5WrZsmSZMmNBk25gxY5q859BEumfPnlbre/D7U1NTdfbZZzfZnpGRofHjx7f6GT2tsrJSP/nJT+T3+/Wtb31L99xzT6PtvXv31hVXXKELLrhAixcv1umnnx7t+JeVlWnx4sUaMGCAtm/froULF0bfdzB2e/bs0e9//3tddtll6tevn5xOp8444wwtXLhQdrtdGzZs0AsvvBB9344dOzR79my5XC7dddddnRo8r6ur009/+tPo89xvvPFGnXDCCR3+PAAwK/Jv/ByaDy+99FLddtttOuKII+RwODRixAgtXLhQgwcP1oEDB/Tggw+2+XnPPfecZs6cqUgkopEjRzbpXO/fv1+XXXaZ7r//fh1++OF6/PHHtWbNGq1YsUK/+c1v9PXXX+vWW2/Vbbfd1uZ3hUIhzZo1S88++6wk6cc//nGzf28AQMeQf+Ono/k3GAzq2muv1Z133imr1aq5c+fqww8/1AcffKD7779fdrtd9957r372s581uhC+f/9+3XTTTbJYLJozZ45SU1NjqmdH+78ff/yxLrjgAj311FMaN26cXnrpJa1du1ZvvvmmJk2apNWrV+vKK6+MDv4DABojB8ePUXLwNddcI6fTqQ0bNujyyy/XRx99JL/fr+3bt+vuu+/Ws88+G13VrLXHh/3+97/X2rVr9frrr+uaa67R7t27dc8992j27Nkd+fMBgKmRf7vPe++9p40bN0pSh1ZDa2sMuiUPPfSQ/vjHP0qSzjzzTE2aNKnR9q7KvxLXgJGYeDQnkKCuu+46rVy5Ulu2bNG1114rh8Oh4447TqeeeqpKS0s1bNiwRuW3bt0qSRoyZEiLq3vk5uY2+7rb7ZbT6Wzy+qGz8Ovr61ut75YtWyQ1nDy1tDpIRx6FcdFFF8VcdsCAAXrggQfa/R1Sw4nEbbfdpkAgoMMPP1yPPfaY+vXr16hMfn6+fvWrX7X4Gf369dPEiRN1//33a+nSpbrxxhslNdyd7fV6NWzYsGZP9vLy8nT22WfrhRde0Jtvvqkf/vCHkqSZM2fq66+/1q9//etOPZJz9+7duuaaa7R69WpJ0rXXXqsrrriiw58HAGZG/m0Qj/x7sK0Wi0XXXHNNk+0Oh0OTJ0/WzJkztWzZMoXDYVkszd8386c//Sn6ncOHD9eCBQuaDLIvXLhQa9asUWZmph577DG53W5JDXcJXnjhhRo6dKh+9KMfafHixSovL1dxcXGz3+X1evWLX/xCb731liTpvPPO444yAOhi5N8GiZR///a3v2nZsmVyuVx69NFHG/VJx48fr5EjR+qcc87R22+/rRdffDF6MWTOnDn68ssvdfXVV+vYY4+NuT0d7f/ecccd2rNnj0pLS3X//fdHX//Wt76lG264Qf3799dvf/tb3XbbbTr99NOj5wMAgAbk4AbJnIPz8/P10EMP6brrrtMHH3wQHZuWJKvVqmnTpumTTz7RK6+8ovT09BY/52A9Bw0apOuuu06DBg3SL3/5Sy1atEiXXHJJdNIFAID8e1B3XANesmSJpIb6xbqS2UGxjEF/UzAY1B133KGnn35aknTaaafpD3/4Q5Obrboq/3INGImKiWhAgiosLNTf//53zZs3T2+88Yb27dunlStXauXKlfr973+vgoIC/frXv9aJJ54oSdq3b58kyeVytfu7Yr07qjUej6fN7+/IgO+///3vmMt2ZDnVSCSi3//+99ElbQsKCrRw4UJlZWW1+7Ok/51oHXzsl9TQbq/X2+pJ2MHnf3/++eeSpL/85S969913dfLJJ7frROybNm3apEmTJunLL79USkqKfvWrX+nyyy/v8OcBgNmRfxvEI//27t1bkjRw4MDo3VzfdDAf7t+/X3v37o0uV36Q3+/XrFmz9OKLL0qSRo0apblz50Y/+1CvvvqqJOnSSy9t9m9w9NFH69vf/rbefPNNvfTSS81ORKupqdHUqVO1fv16SdLll1+uX/3qVzziCwC6GPm3QSLl34N59Ac/+EGzE8OOOOIInXfeeXriiSf00ksv6bzzzlNlZaWee+455efn67rrrou5LR3t/+7atUsffPCBJOmnP/1ps2UuvfRSVVRUaN++faqsrNT3vve9mD8fAJIBObhBsubgg0477TS99tpr+n//7/9p7dq1CgaDOvLII3X++eeroKBAP/7xjyWpXWPm55xzju677z7t3LlTH3zwARPRAOAQ5N8G8b4GHA6HozcXt2fFtvaMQR9q//79mjZtmt59993od959990tTt7rbP7lGjASGRPRgAR2xBFH6De/+Y3uuOMO/ec//9GqVau0fPlyrVy5Uhs3btTVV1+tV155RQMHDozOZj9w4ECP1PXgs7/379/fYplDl5aN1YYNGzpapTb5/X7NmDEj+rz0k08+WQ8++GCrJxKRSESBQKDFk4ZIJCKp8TKp+fn52rFjR7PP+D7oYPmDn3uwTsuXL29y58OhLr30UknSueeeq9/+9reNtq1cuVI//elP5fF4lJqaqnvuuUff+c53WvwsAEAD8m988m9+fr4kxZQPJTXJtR6PR9dee61WrVolSfrud7+rOXPmtJiTq6urJTWsPNqSI488Um+++WajCeQHbdy4UZMmTdKOHTtksVh00003RfMuAKDrkX8TK//Gmkel/92IdbAfu2nTJo0cObLF991000266aabNGrUKD355JMd7v8erGNr9bRarRoyZIg+/PDDZvM9AIAcLCVvDj7UYYcd1uzE7nA4rI8//lhSw03cUsMY+M6dO/XFF1/ouOOOa3E188MPP1w7d+7UV1991WKdACBZkX/jew1Ykj788EPt3r1bklReXh7Te9o7Bn3Qjh07NGnSpEaPAb3xxhvbvKG5Pfn3UFwDRqJjIhqQgCKRiL788ktt3bpVp556qiwWi44++mgdffTRuvrqq7VlyxZdcMEF2r9/v15//XVddtllGjJkiKSG5Vnr6+ubneG+ePFivfbaaxo9enSHnoPdmkO/3+v1Njsr/tNPP+3S7+yMYDCo6667LjoT/txzz9Wdd94pu93e4ntuuOEGvfLKKxo9erQqKiqaLbNu3TpJ/xtokKRjjjlG7777rtasWdPiZ2/evFnS/5bOLSgoUDAYbLH8wbsECgoKlJ6ersGDBzfavmrVKk2ePFl1dXXq06ePKioqdNxxx7X4eQAA8m+8HXPMMZIaVi+prq5WTk5OkzIH82GfPn0aTQzfv3+/rr76an300UeSpKlTp2r69OmtduTT09NVX1+vXbt2tVjm4EDEN5c3//TTT3XppZdq7969SktL03333dfs47UBAJ1H/o2vjubfg7mxPXl08ODBOv7441ss/5///Ed+v1+DBw9Wv379ooPpHe3/Hpq/d+7c2eLjSlrK9wCQ7MjB8WWEHCxJlZWV+uSTT1RcXNzsJLZVq1bJ4/HI6XRGx5d37Nihb3/725KkZ599VkcffXSz3/vll19KkjIzM1usGwAkG/Jv9zm4gvYRRxzR7Cqj39SRMWipoT/64x//WNu2bZPVatUtt9zS5mrfHcm/h27jGjASXfO3KQDoUfv27dO4ceN05ZVXau3atU22DxkyJNpxDYfDkqQTTjhBLpdLfr9f//jHP5q8JxwO67nnntPy5cvl9Xq7vM4nnnii+vfvr0AgoGeffbbJdp/Pp5deeqnLv7ej5syZE52EdtVVV+m3v/1tq5PQJGno0KEKBoNasWKFtm/f3mS7x+OJPvP77LPPjr7+3e9+V1LDYzffeOONJu/bvXt39G8zbtw4SdItt9yixYsXt/jfQbNmzdLixYs1derU6Guff/65rrnmGtXV1Sk7O1uLFy/mBAQAYkD+ja/i4uLoMuKPPPJIs2WeeOIJSf/LhwfdeOON+uijj5SSkqJbbrlF119/fZsDACUlJZKk5557TqFQqMn2ffv2aenSpY3KSlJtba0mTZqkvXv3qnfv3nr00UeZhAYAcUT+ja+O5t+DufEf//hHs3/DQ//2B8tOnTq11X7sgAEDJElTpkzR4sWLdcstt0jqeP83Ly8vemH7mWeeabZtq1at0rZt2xrVEwDQgBwcX0bIwZL02muv6Xe/+50ee+yxJt8ViUSiN2RfeOGFSktLk9TwuNGDK7YdmqsPtWTJEu3cuVN2u12nnXZas2UAIBmRf7vPf/7zH0nSscceG1P5joxB+/1+TZ06Vdu2bZPdbtcf//jHNiehSR3LvxLXgGEcTEQDElDfvn01evRoSdLMmTO1adOm6LZwOKynnnpKGzduVEpKSrRcenp69LnPh06ykhqWQ73rrrv0n//8R+np6ZowYUKX19lqteq6666TJN133316+eWXo9v27t2r6dOnNzt5qye8//77WrRokSTpe9/7nmbMmBHT+y688EL17dtXPp9PP/vZz7R169bots8//1yTJ09WTU2NBg8erIsvvji6LT8/XxdeeKGkhuXPD43Nrl27NH36dB04cEBDhw7V2LFjO92+WbNm6euvv1ZaWprmzZvX6jLuAID/If/Gl8Vi0Q033CBJWrRokebNmxd9RInf79ddd92ljz76SC6XS1dffXX0fS+88EL07zplyhRNnDgxpu+bMmWK7Ha71q5dqxkzZmjPnj3RbZ9//rmmTJmiffv26Vvf+pbOP//86La7775b1dXVslgsuv/++1u9qxwA0Hnk3/jqaP699NJLlZGRoe3bt+uaa65p9BjM3bt3a9q0adq8ebMyMjKisehuKSkp0UeYPP7441qwYEGjx5+tXLlS119/vaSGm8WOOuqoHqknACQqcnB8GSUHn3feeZKkl19+WS+88EL09f379+vmm2/W8uXL1adPn0Y3QkvStddeK0l6/vnn9ec//1mBQCC6bcmSJbr55pslSZMmTdJhhx3W6XoCgFmQf7vPwadYFRUVtVm2o2PQCxYsiH7Pr3/965iv83Y0/3INGEbBozmBBHXHHXdowoQJ2rhxo7773e/qW9/6lnr37q3q6mrt3btXkvTzn/9cRx55ZPQ91157rbZs2aJXXnlFP/nJTzRw4ED169dPn332mQ4cOKC0tDT9/ve/j9tS2Afru2jRIv385z/Xvffeq379+umTTz6R3+/XmDFjoiuP9KQFCxZE/3/Tpk2tzkwfMGCAHnjgAUkNS6Q/9NBD+slPfqK1a9eqvLxcgwYNks1m06effqpwOKwjjjhCCxcujD6v/aBZs2Zp165dWrZsWaPYbNy4UYFAQIcffrjuv//+Np8x3pa1a9dqxYoVkqS0tDTdfvvtrZafOnWqSktLO/WdAGAm5N/4+v73v69t27bpwQcf1O9//3s9/PDDOuKII7Rt2zZ5PB6lpaXp7rvvjj6qWpIWLlwY/f+VK1e2mreHDx8evbN76NChuu+++zRjxgy99NJLeu2115Sfn69wOBzN24cffrjmz58fvats586devHFFyU15NG5c+dq7ty5LX7f+eefrwsuuKBTfxMAAPk33jqSfwcMGKC5c+fq2muv1fLly1VWVqb8/Pxo/zcQCKhPnz7605/+1KOP25owYYK2bdumhQsX6t5779W8efM0aNAg7d27N/o4sJKSEv3mN7/psToCQCIjB8eXEXLwiSeeqCuvvFKPPPKIfvnLX+oPf/iD+vXrp82bN8vn86lPnz569NFH1b9//0bv++53v6tNmzZp7ty5+sMf/qCHH35Yubm52rlzZ/SxohMmTNDPfvazTtcRAMyG/Ns9du7cKUnNPh77mzoyBu33+/X4449Lkmw2m55//nk9//zzLb6vtLQ0OrGsI/mXa8AwEiaiAQkqMzNTzz33nB5++GG98847+vzzz7V9+3b1799fZ599tiZOnNhkhQ6bzab7779fZ511lp577jmtW7dOGzZsUP/+/TVu3DhNnjw5+hzveLnlllt08skn68knn9THH3+sffv2aeTIkbrmmmv01VdfJcRJyKpVq6L/v379+lbLHn744Y3+feKJJ+qll17SI488omXLlumLL76QzWbTsGHDNG7cOF122WVNJqFJDScEFRUV+sc//qHnnntOVVVV2rt3r4444gidddZZuvzyy9W3b99Ot+1f//pX9P/37dunf//7362W3717d6e/EwDMhPwbfz/96U916qmn6rHHHtMHH3ygDRs2aMCAARozZoyuuuqqRgMse/fu1SeffBL994cfftjqZ9tsjbs348aN07Bhw/TII4/ovffe0+bNm2Wz2TR06FCNGTNGl156qdxud6PPDwaDkiSv19tmHj3llFNibjcAoGXk3/hrT/496MQTT9Q//vEPPfroo6qsrNTnn38uScrNzVVpaamuuOKKHp2EdtCNN96o008/XU899ZT+/e9/6+OPP1avXr00atQonXPOOTrnnHNktVp7upoAkJDIwfFnhBz8y1/+Usccc4yeeuoprV+/Xl999ZWys7P17W9/W5MmTYo+YvSbrrvuOpWUlOjxxx/Xhx9+qA0bNigjI0NlZWW66KKLoiv5AAAaI//G3/79+6MrkQ4cOLDVsh0dg964caNqa2slScFgsM2x5EGDBjX6d3vzL9eAYSQpkUgk0tOVAAAAAAAAAAAAAAAAAAAYl6WnKwAAAAAAAAAAAAAAAAAAMDYmogEAAAAAAAAAAAAAAAAAOoWJaAAAAAAAAAAAAAAAAACATmEiGgAAAAAAAAAAAAAAAACgU5iIBgAAAAAAAAAAAAAAAADoFCaiAQAAAAAAAAAAAAAAAAA6xdbTFTC6LVu2qK6uTmlpaRoyZEhPVwcAgKRBDgYAoPuRfwEA6H7kXwAAegY5GACA9mMiWifV1dXJ6/V22eeFQiGtXr1aknTsscfKarV22Wej5xBXcyKu5kNMjaUrczCxNyfiak7E1ZyIq3HQB0ZbiKk5EVdzIq7GQf5FLIir+RBTcyKuxsIYNNpCXM2JuJoTce0+PJoTAAAAAAAAAAAAAAAAANApTEQDAAAAAAAAAAAAAAAAAHQKE9EAAAAAAAAAAAAAAAAAAJ3CRDQAAAAAAAAAAAAAAAAAQKcwEQ0AAAAAAAAAAAAAAAAA0ClMRAMAAAAAAAAAAAAAAAAAdAoT0QAAAAAAAAAAAAAAAAAAncJENAAAAAAAAAAAAAAAAABApzARDQAAAAAAAAAAAAAAAADQKUxEAwAAAAAAAAAAAAAAAAB0ChPRAAAAAAAAAAAAAAAAAACdYuvpCgAAAABAezidTlmt1p6uBgAAAAAAAAAAAA7BRDQAAAAAhhAMheUPRZQxcJBqvX7t2u+X22mXw2qRzWquxZ4b2hqWxxdUrc+vDKdDbqfNlG0FAAAAgFjRVwIAAAASGxPRAAAAACQ8rz+opVU1mle5WeuqPdHXi3LcmlKapzGFWXI5zNG9Saa2AgAAAECs6CsBAAAAiY/bQwAAAAAkNK8/qNlLqjRt8epGFxskaV21R9MWr9bsJR/L6w/2UA27TjK1FQAAAABiRV8JAAAAMAYmogEAAABIWMFQWEurarRoxbZWyy1asVVvVu1UMBTuppp1vWRqKwAAAADEir4SAAAAYBxMRAMAAACQsPyhsCqWbY6pbEXlJvkNfMEhmdoKAAAAALGirwQAAAAYBxPRAAAAACQsjy+o9ds9bRdUw+NYPD7jPoYlmdoKAAAAALGirwQAAAAYBxPRAAAAACSsWp+/XeU9dYE41ST+kqmtAAAAABAr+koAAACAcdh6ugJtOfPMM/Xll1+2WW7UqFF68skno/9+7733tGDBAn388ceqq6tTXl6efvSjH+mCCy5QSkpKPKsMAAAAoItkOB3tKu9Os8epJvGXTG0FAAAAgFjRVwIAAACMI+Enoo0ZM0Z79uxpdlskEtGrr76qYDCooqKi6OuLFy/WbbfdJrvdruLiYtntdq1YsUKzZs3Sv//9b82ZM6e7qg8AAACgE9xOm4py3FpX3fZjWIpy3HI7E76L06JvttVhs2hMYab693Jo9wG/llbtlD8YlmT8tjbH6XTKarX2dDUAAAAAJJhk6hcCAAAARpfwZ+MzZ85scduf/vQnBYNBnXTSSbrhhhskSVu2bNGdd96p9PR0Pfnkkxo+fLgkqbq6Wpdddpmef/55lZaW6jvf+U631B8AAACIp2AoLH8oLI8vqFqfXxlOh9xOmxxWi2xWS09Xr9McVoumlOZp2uLVbZadWpovh4HbfLCtv3t1g35z7kidMKivPL6A9nn96uNy6J7zj9EH2/Zq1t/WGr6th2rYhyPKGDhItV6/du33y+20m2YfBgAAANA5ydQvBAAAAIwu4SeitWTlypV66KGH5Ha7dd9998lma2jKwoULFQqFdNVVV0UnoUlSTk6Obr31Vl199dVauHAhE9EAAABgeF5/UEurajSvcnOjO8OLctyaUpqnMYVZcjkMe8ovSbJZLRpTmKWJJblatGJbi+UmlgxSWWGmoScu2awWnVWYpTOHZemN9TWaMG95k7hePTpPr0w/XbYUGbqtByXDPgwAAACgc5KpXwgAAAAYnSFH9P1+v2699VaFw2HNmDFDWVlZ0W1vv/22JOmss85q8r5TTjlFvXv31tq1a1VTU9PofQAAAICReP1BzV5S1ewg/Lpqj6YtXq2JJYM0c/www0/kcTlsmjm+UMVD+quiclOTCUtTS/NVVphp+HZKUjgizX65Sn9Z1Xxcr396tS4pztXM8YU9ULuulUz7MAAAAIDOSaZ+IQAAAGBkhjwjf+yxx/TZZ59p5MiRuuCCC6Kvf/XVV9q9e7fsdrvy8vKavM9qtSovL08fffSRNmzYwEQ0AAAAGFIwFNbSqppW7wSXpEUrtqp4SD+Vj8g2/B3hLodN5SOyVVaYqb0H6uXxBtQ3PdVUj3D0B0N6fX1Ns5PQDvXUym0aNbifykdmy2GzdlPtulYy7sMAAAAAOufQfqHHF5SnLiB3ml1up800/UIAAADA6Aw3EW3//v2aP3++JGnatGlKSUmJbtu5c6ck6bDDDpPF0nyHIzMzs1HZrhKJRBQKhTr9OYd+Rld8HhIDcTUn4mo+xLRrWK3dOymiK3IwsTcnM8fVH4qoYtnmmMpWVG5SWWGmUhSJc63iL0WSTWHVbt8qq9Wq/pl5slhSJHXNuXhPC4Qimv/P2OI6/53NGjs8S9YUY7Y7WffheDJi/pXMfaxOVsTUnIirORHXziP/IpEkS1xTJKVaUzQg3a4B6fZDtpijX3ioZIlpsiGuXcOIOZjYmxNxNSfiak7EtfNizb+Gm4j2//7f/9PXX3+toqIinX766Y22eb1eSVJaWlqL709NTW1Utqv4fD6tXr26Sz9z7dq1Xfp5SAzE1ZyIq/kQ04474YQTuvX7ujoHE3tzMlNcnU6nMgYO0vrtnrYLq+ERh3sP1Kt2+1b5fL441657rVmzpqer0GX69OkjV/+cdsW11heQd3e19u3bF9/KdTH24fgwev6VzHWsRgNiak7E1ZyIa8eQf5GoiKv5EFNzIq4dZ/QcTOzNibiaE3E1J+LaMbHmX0OtUxwKhfTEE09IkiZPntxk+8FV0A5dJa0lkQh30wMAAMB4rFarar3+dr3H4w10+52iaB+73a697YzrPl9Adru97YIJhn0YAAAAAAAAAABzMtSKaKtWrVJNTY0yMjJ05plnNtneq1cvSVJdXV2Ln1FfXy9JcrlcXVo3p9OpoUOHdvpzQqFQdPblyJEjudhiEsTVnIir+RBTY+qKHEzszcnMcd21v32TePqmp2pA9pFxqk33MnNcd37dvrj2cdmVmX64Dj/88DjVKH6SeR82C/rAaAkxNSfiak7E1XjIv2gNcTUfYmpOxNWYGINGS4irORFXcyKu3cdQE9Fee+01SdK4cePkcDiabM/KypIkffXVV4pEIs2ujLZz505JUmZmZpfWLSUlpct3VKvVys5vQsTVnIir+RBT4+jqHEzszclscXU77SrKcWtddduPNizKccvttJuq/X369JHdbjd9XB02i8YUZqp/L4d2H/BradVO+YNhSf+Na5px45rs+7AZ0AdGLIipORFXcyKuxkD+RayIq/kQU3MirsbBGDRiQVzNibiaE3GNL0M9mrOyslKS9J3vfKfZ7X369FFWVpb8fr+2bt3aZHsoFNLmzZslqUvuHAMAAAB6gsNq0ZTSvJjKTi3Nl8NqqNP+FvmDIdUFI3L1z9F+W4Z2fu3Xgfqg/MFQT1etS9itKZo0Ok9H9HXq8StH6d+3jNWss4frolG5mnX2cP171lg9fuUoHdHXqcmj82S3Nr3xxiiSdR8GYB7BUFhef1A7auu0YYdHO2rr5PUHFQyFe7pqAAAAAAAAQI8xzIpou3btUnV1tWw2m4477rgWy5WWluqZZ57R66+/rsmTJzfa9u677+rrr7/WsGHDlJ2dHe8qAwAAAHFhs1o0pjBLE0tytWjFthbLTSwZpLLCTNlMMInnQH1Qb6yv0YJ3NjdaRasox61Jo/M0dniWeqUapnvTLIfNqnFFWRozPEtvrK/RhHnLm7T16tF5emX66bKmNJQ3qmTchwGYh9cf1NKqGs2rbJqTppTmaUxhllwOY+ckAAAAAAAAoCMMM5q/Zs0aSVJBQYFcLleL5S655BJZrVbNmzdPq1evjr5eXV2tO++8U5I0ZcqUuNYVAAAAiDeXw6aZ4wv14EXHqSjH3WhbUY5bD150nGaOH2aKC+He+qDuerlK059e3eRRjuuqPZr+9GrNXlKlA/XBHqph14lEpNkvV+n6Ftp6/dOrNWdJlcKRHqpgF0qmfRiAeXj9Qc1eUqVpi5s/Tk9bvFqzl3wsr9/4OQkAAAAAAABoL8OM6H/++eeSpCOOOKLVcsOGDdP06dN133336eKLL9aoUaOUlpamlStXyuv16sILL9T48eO7o8oAAABAXLkcNpWPyFZZYaY8vqA8dQG50+xyO21yWC2mWEXKHwzp9fU1+suqllfNkqSnVm7TqMH9VD4y27ArhdUHQnotxraeNLifykdkK9VuzLYedOg+vPdAvTzegPqmp8rttJtmHwZgHsFQWEuralpdyVGSFq3YquIhDcdpjmMAAAAAAABIJoaZiLZ3715J0sCBA9ssO3nyZOXn5+uxxx7TmjVrlJKSovz8fF100UU699xz411VAAAAoNvY/jtZx+WwKTsjraer0+UCoYjm/3NzTGXnv7NZY4dnyagLaAXDES2Isa0L3tmss4ZnxblG3cNmtShFEdVu3yqr1aoB2UfKajX2BDsA5uQPhVWxLLbjdEXlJh4tDAAAAAAAgKRjmEs0119/va6//vqYy5eVlamsrCyONQIAAAAQbx5fQOu3e9ouqIZHotXWBeRKNUw3p5FkamtzfD5fT1cBAFrl8QXbdZz2+II8XhgAAAAAAABJhdsyAQAAACSsvd5Au8rva2f5RJJMbQUAI6r1+dtV3lPHcRoAAAAAAADJhYloAAAAABJWX5e9XeX7tLN8IkmmtgKAEWU4He0q707jOA0AAAAAAIDkwkQ0AAAAmJbT6VR6enpPVwOd4HbaVZTjjv7baklR4cDeOmlwXxUO7C2rJSW6rSjHbeiL/t9sa2uM3lYAMCK309a+47STx3ICAAAAAAAguTAiBgAAANMJhsLyhyLKGDhItV6/du33y+20y2G1yGblXgwjsVtTNGl0nn7993WaWDJIFxfnqs4f0h6vX/1cDqXaLVq86nMtWrFVk0fnyW5NaftDE5TNkqKrR+fp+qdXt1l20ug82SzGbSsAGJHDatGU0jxNW7y6zbJTS/Pl4JwDAAAAAAAkqIbrKGF5fEHV+vzKcDrkdtq4joJOYyIaAAAATMXrD2ppVY3mVW7WumpP9PWiHLemlOZpTGGWXA5Og43CYbPqrKIsnZzfX//cuEuTn3i/SVwvP2Ww3rj+dKWn2eSwWXuwtp2TarfqrOFZmlicq0Urt7VYbmLxII0dnqVUu3HbCgBGZLNaNKYwSxNLcrVoRSvH6ZJBKivMZNAWAAAAAAAkJK6jIJ7YcwAAAGAaXn9Qs5dUNXtxeF21R9MWr9bEkkGaOX4YnSiDefCtT1qM643PrYnG1egsKdK0sqN0bG4fPfruZ00GAa44dbBOP2qAWAwNAHqGy2HTzPGFKh7SXxWVm5ocp6eW5qusMJPzDAAAAAAAkJC4joJ4Y68BAACAKQRDYS2tqml1hRJJWrRiq4qH9FP5iGxWKjGAZIprfSCkV9fV6La/r9Mlxbmaf+mJqvOHtNfrV9//Pob0Lyu36c6XqnT794tUPiKbVdEAoAe4HDaVj8hWWWGmPL6gPHUBudPsPL4CAAAAAAAktGQab0fPYSIaAAAATMEfCqti2eaYylZUbuKRWQaRTHENhiNa8M/NqvUFNHfZJlVUbtLQ7N5KT7Vpf31QG3Z8rXCkoeyCdzbrrOFZPVthAEhitv9OOHM5bMrOSOvp6gAAAAAAALQpmcbb0XOYiAYAAABT8PiCWr/d03ZBNSwv7fEFWVbaAJIprh5foFFbwxGpavvXzZZdV+1RbV1ArlRjthUAAAAAAAAA0L2SabwdPYepiwAAADCFWp+/XeU9dYE41QRdKZniutfbvrrva2d5AAAAAAAAAEDySqbxdvQcJqIBAADAFDKcjnaVd6fZ41QTdKVkimtfV/vq3qed5QEAAAAAAAAAySuZxtvRc5iIBgAAAFNwO20qynFH/221pKhwYG+dNLivCgf2ltWSEt1WlOOW28ly0kbwzbi2xuhxdTvt7WuryQYBnE6n0tPTe7oaAAAAAAAAAJKcWccqk2m8HT2HvQYAACBJ+IMhBUIReXwB7fUG1Ndll9tpl92aIofN2tPV6zSH1aIppXm65YV1mlgySBcX56rOH9Ier1/9XA6l2i1avOpzLVqxVVNL8+WwmuOejGAoLH8oLI8vqFqfXxlOh9xOmxxWi2wmaOPBuE5bvLrNskaPq82SoqtH5+n6p1e3WXbS6DzZDplcaWQN+3BEGQMHqdbr1679frmddtPswwAAAAAAAACMwexjlck03o6ew0Q0AACAJHCgPqg31tdowTubta7aE329KMetSaPzNHZ4lnqlGvvU0Ga1aGxhlkqG9Fflxl2a/MT7Tdp6+SmD9cb1p6t3ms0UnUavP6ilVTWaV9k0rlNK8zSmMEsuh/HjOqYwSxNLcrVoxbYWy00sGaSywkxDxzXVbtVZw7N08ahc/WVVy229pDhXY4dnKdVu/AmkybAPAwAAAAAAAEh8yTBWmUzj7eg5xv6VAAAAoE3e+qDuermq2Ykt66o9mv70al1SnKuZ4wsNPxktIumBtz5ptgO1rtqjG59bo4klgzRz/LDur1wX8/qDmr2kqsW2Tlu8OtpWo3eOUyRNO/MoHXtEHz367mdNBgGuOHWwTj9qgMywPlivVJtuPrtQo4b0M/XEUSm59mEAAAAAAAAAiSuZxipdDptmji9U8ZD+qqjc1GQMemppvsoKMw3fTvQc9hwAAAAT8wdDen19TaurK0nSUyu3adTgfiofmW3Yx3QGQ2Etrapp9S4eSVq0YquKh/RT+Yhsw97Nk2xtfaOqRre8sE6XFOdq/qUnqs4f0l6vX33/+8jVv6zcpjtfqtJvzhlh6LYe1CvVpvIR2TpreJZq6wLa5w2oj8sud5pdNkuKKVZCS6Z9GAAAAAAAAEDiSsaxSpejYQy6rDBTHl9QnrqA3Gl2uZ020zyGFD2HiWgAAAAmFghFNP+fm2MqO/+dzRo7PEtGvcnFHwqrYllsba2o3GToZaWTsa21voDmLtukispNGprdW+mpNu2vD2rDjq8VjjSUNXpbD3Vwspkr1aaBGc4erk3XS6Z9GAAAAAAAAEDiStaxStt/J5y5HDZlZ6T1dHVgIga9zAgAAIBYeHwBrd/uabugGpaXrq0LyGXQR/55fMF2tdXjCxp2aelkbms4IlVt/7rZskZvazJJpn0YAAAAAAAAQOJirBLoWsafpgkAAIAW7fUG2lV+XzvLJ5Jan79d5T11tNUIkqmtyYS4AgAAAAAAAEgEjFUCXYuJaAAAACbW12VvV/k+7SyfSDKcjnaVd6fRViNIprYmE+IKAAAAAAAAIBEwVgl0LSaiAQAAmJjbaVdRjjumskU5bkN3oNxOW/va6jTu0tm0tXlGb2syIa4AAAAAAAAAEgFjlUDXYiIaAACAidmtKZo0Oi+mspNH58luTYlzjeLHYbVoSmlsbZ1ami+H1binwrS1eUZvazIhrgAAAAAAAAASAWOVQNfiFwIAAGBiDptVY4dn6eJRua2Wu6Q4V2OGZ8lhs3ZTzbqezWrRmMIsTSxpva0TSwaprDBTNgN3FmlrU2ZoazIhrgAAAAAAAAASAWOVQNdizUAAAACTs6ZIM88u1Kgh/bTgnc1aV+2JbivKcWvS6DyNGZ4lAy+GFuVy2DRzfKGKh/RXReWmJm2dWpqvssJMuRzGPw2mrQ3M1tZkQlwBAAAAAAAAJALGKoGuw68EAADAxIKhsF6vqtHvXt2gO88ZoaennCyPL6Bab0AZLrvcaXa9v3WPyv/wT834zjCVj8g2/N08LodN5SOyVVaYqb0H6uXxBtQ3PVVup10Oq8Xw7TvUoW31+ILy1AXkTrPL7bSZuq1mj2syIa4AAAAAAAAAEgFjlUDXYCIaAACAiflDYVUs26zP9/p0+aP/ks0inVWUrf69HNp9wK/X1+1QMNxQtqJyk2mWlbZZLUpRRLXbt8pqtWpA9pGyWo372NHW2P7bAXY5bMrOSOvp6sRVMsU1mRBXAAAAAAAAAImAsUqg85iIBgAAYGIeX1Drt/9vCelgWFqydkezZddVe+TxBU21tLTP5+vpKiAOiKs5EVcAAAAAAAAAiYCxSqDjjL/cBQAAAFpU6/O3q7ynLhCnmgAAAAAAAAAAAAAwMyaiAQAAmFiG09Gu8u40e5xqAgAAAAAAAAAAAMDMmIgGAABgYm6nTUU57pjKFuW45Xaa57GcAAAA6DpOp1Pp6ek9XQ0AAAAAAAAkMK40AgAAmJjDatGU0jxNW7y6zbJTS/PlsHKfgtEEQ2H5Q2F5fEHV+vzKcDrkdtrksFpkI56GRVzNh5gCMKqG41dEGQMHqdbr1679frmddlMevzhWAwAAAAAAdA4T0QAAAEzMZrVoTGGWJpbkatGKbS2Wm1gySGWFmVxgMxivP6ilVTWaV7lZ66o90deLctyaUpqnMYVZcjk45Tca4mo+xBSAUSXT8SuZ2goAAAAAABAvXGkEAAAwOZfDppnjC/XgRcc1eUxnUY5bD150nGaOH8aFNYPx+oOavaRK0xavbnSxVJLWVXs0bfFqzV7ysbz+YA/VEB1BXM2HmAIwqmQ6fiVTWwEAAAAAAOKJq40AAABJwOWwqXxEtsoKM+XxBeWpC8idZudRQwYVDIW1tKqm1VXuJGnRiq0qHtJP5SOyibEBEFfzIaYAjCqZjl/J1FYAAAAAAIB4Y9QEAAAgSdisFrkcNmVnpKkgq7eyM9Lkcti4kGZA/lBYFcs2x1S2onKT/KFwnGuErkBczYeYAjCqZDp+JVNbAQAAAAAA4o2rjgAAAIDBeHxBrd/uabugGh4n5fHxGCkjIK7mQ0wBGFUyHb+Sqa0AAAAAAADxxkQ0AAAAwGBqff52lffUBeJUE3Ql4mo+xBSAUSXT8SuZ2goAAAAAABBvTEQDAAAADCbD6WhXeXeaPU41QVciruZDTAEYVTIdv5KprQAAAAAAAPHGRDQAAADAYNxOm4py3DGVLcpxy+20xblG3SszM1Pf+ta3eroaXS7Z42pGxBSAUSXT8SuZ2goAAAAAABBvTEQDAAAADMZhtWhKaV5MZaeW5sthNcdpf30gpLpgRLbeh2l3KE07v/brQH1Q9YFQT1etSyRrXM2MmAIwqmQ6fiVTWwEAAACgI/zBkA7UB7V9n0/rqz3avs+nA/VB+YPmGJcF0LW4hQ8AAAAwGJvVojGFWZpYkqtFK7a1WG5iySCVFWbKZoILpgfqg3p9fY0WvrNZ66o90deLcty6enSezhqepV6pxu7eJGNczY6YAjCqZDp+JVNbAQAAAKC9DtQH9cb6Gi1oZlx20ug8jTXBuCyArsURAQAAADAgl8OmmeMLVTykvyoqNzUZBJhamq+ywky5HMY/5ffWB3XXy1X6y6qmF4fXVXt0/dOrdUlxrmaOLzT8oEcyxTVZEFMARpVMx69kaisAAAAAxKqtcdnpJhqXBdB1OBoAAAAABuVy2FQ+IltlhZny+ILy1AXkTrPL7bTJYbWYYsWO+kBIr62vaXaw41BPrdymkwb3U/mIbKXard1Uu/hIhrgmG2IKwKgOPX7tPVAvjzegvumpcjvtpjt+cawGAAAAgP/xB0N6PcZx2VGD+6l8ZLYcNmOPywLoGkxEAwAAAAzM9t8Loy6HTdkZaT1dnS4XDEe04J+bYyq74J3NOmt4Vpxr1D3MHtdkREwBGJXNalGKIqrdvlVWq1UDso+U1WrOiwscqwEAAACgQSAU0fwYx2Xnv7NZY4dniUWkAUgSt/IBAAAASFgeX0Drt3vaLqiG5eBr6wJxrhEAAMnJ5/Np//79PV0NAAAAAEA3YFwWQEcxEQ0AAABAwtrrbd8Axr52lgcAAAAAAAAANMa4LICOYiIaAAAAgITV12VvV/k+7SwPAAAAAAAAAGiMcVkAHcVENAAAAEl9+vTRgAEDeroa6GJOp1Pp6ek9XQ10gttpV1GOO/pvqyVFhQN766TBfVU4sLeslpTotqIct9xpDHgAAAAAAAAAQGd8c1y2NYzLAjiUracrAAAA0JP8wZACoYhc/XO01+vXzq/9cjvtsltT5LBZe7p6XepgWz2+gPZ6A+rrspu2rcFQWP5QRBkDB6nW69eu/Q1xdVgtslnNdS+G2eNqs6To6tF5uu3v6zSxZJAuLs5VnT+kPV6/+rkcSrVbtHjV51q0Yqsmjc6T7ZCJaUZm9rgCAAAAAAAASFx2a4omjc7T9KdXt1l28ug82a3mGJcF0HlMRAMAAEnrQH1Qb6yv0YJ3NmtdtSf6elGOW5NG52ns8Cz1SjXH6VIytdXrD2ppVY3mVTZt65TSPI0pzJLLYY62JkNcU+1WjSvK0in5/fXPjbs0+Yn3m7T18lMG643rT1d6mk2pduNP0kqGuAIAAAAAAABIXA6bVWOHZ+niUbn6y6ptLZa7pDhXY4ZncfMsgChzLQcBAAAQI299UHe9XKXpT69uNNFDktZVezT96dWavaRKB+qDPVTDrpNUbfUHNXtJlaYtbr6t0xav1uwlH8vrN0FbkyiukvTgW5/oxufWNNvWG59bowfe+rSHata1ki2uAAAAAAAAABJTr1Sbbj67UH+ccGyTx3QW5bj1xwnHaub4Qm6aBdAIRwQAAJB0/MGQXl9f0+pdPJL01MptGjW4n8pHZhv2bp5kamswFNbSqhotWtF6Wxet2KriIf1UPiLbsI/pJK5NEVcAAAAAAAAA6Fq9Um0qH5mtscOzVFsX0D5vQH1cdrnT7LJbUxifBNCEMa/QAAAAdEIgFNH8f26Oqez8dzYrGIrEuUbxk0xt9YfCqlgWW1srKjfJHwrHuUbxQ1ybR1wBAAAAAAAAoGs5bFa5Um0amOFU4UC3BmY41SvVxiQ0AM1iIhoAAEg6Hl9A67d72i6ohkfh1dYF4lyj+Emutgbb1VaPz7iPNiSuzSOuAAAAAAAAAAAAPYeJaAAAIOns9bZv8sa+dpZPJMnU1lqfv13lPQaexENcW0ZcAQAAAAAAAAAAegYT0QAAQNLp67K3q3yfdpZPJMnU1gyno13l3WnGbStxbRlxBQAAAAAAAAAA6BlMRAMAAEnH7bSrKMcdU9miHLehJ7YkV1tt7Wur0xbnGsUPcW0ecQUAAAAAmInT6VR6enpPVwMA0AqO1QDQGBPRAABA0rFbUzRpdF5MZSePzpPdmhLnGsVPMrXVYbVoSmlsbZ1ami+H1binwsS1ecQVANBdgqGwvP6gdtTWacMOj3bU1snrDyoYCvd01QAAgAkEQ2HVhyLKGDhIofRM7drv51wDABIMx2oAaJ5xlwsAAADoIIfNqrHDs3TxqFz9ZdW2FstdUpyrMcOz5LBZu7F2XSuZ2mqzWjSmMEsTS3K1aEXLbZ1YMkhlhZmyGXjCEnFtirgCALqL1x/U0qoazavcrHXVnujrRTluTSnN05jCLLkcDLkBAICO4VwDABIfx2oAaBlHPwAAkJR6pdp089mFKh7ST/PfadpZnDw6T2OGZ6lXqvFPl5KprS6HTTPHF6p4SH9VVG5q0tappfkqK8w0xSCANUWaeXahRg3ppwXNxHXSf+NqhkWzUiRNO/MoHXtEHz367mdN2nrFqYN1+lEDZIKmJlVcAcCIvP6gZi+panZy9Lpqj6YtXq2JJYM0c/wwU5xvAACA7sW5BgAkPo7VANA6jnwAACBp9Uq1qXxktsYOz1KtL6B9voD6uOxyp9llt6aYarWhRm2tC2if17xtdTlsKh+RrbLCTO09UC+PN6C+6alyO+1yWC2GXjHroGAorNeravS7VzfoznNG6OkpJ8vjC6jWG1DGf+P6/tY9Kv/DPzXjO8NUPiLbsO0OhsJ6o6pG/5+9ew9voz7z/v+RZiRbiiPnQCzHgJ3YQCI76UI52NAL3K4TaMzT5bDwtCFeWpYSp7SbwrbleWq63W1pQ+lve9jCds2hhS2BbKHLsmxJ25BCzKnh0NYFHBNamyY8dWJOiUUi2fJI+v2RxiTYsa1YsjQz79d19boW6Rv5/u4tzT3fmXtm/uHBLq2qr9Rtl5+mwURSe2IJzQ76VeTz6t5nduqGn3braxcusf1c3ZJXALAjK5nS5u7+ce/QKUnrt+5Q/cI5bKcBAEBG2NcAgMLHthoAJkYjGgAAcDW/acjwJBV7q08zfD6VlRwrw3BOU9ah/KYhvykFi0zNLw3kO5ycMg2vPEprYNcOGYaheeUnOCqviWRK7Vt69dqeuD5x53MyvdK5deWaO8Ovt/YntKlrt6zUgbHtHT22fmTlwbkOxIf1/S09au/o0aLymSopMrVvyNL23e8olT4w1ilzdUNeAcCODm6nJ4PtNAAAyBT7GgBQ+NhWA8DEaEQDAACQtHfvXknSsccem99AkFXxeDzfIeRENG5p2653H9lopaSNL+4ec2xXX1TRuGXb28C/d66ptNS9650xxzptrk7OKwDY0Xu30+NhOw0AADLFvgYAFD621QAwMdpvAQAAAJsZiCcyGh8dHM5RJLnHXI/MznMFADtiOw0AAHKJfQ0AKHxsqwFgYjSiAQAAADZTGvBnND5U7MtRJLnHXI/MznMFADtiOw0AAHKJfQ0AKHxsqwFgYjSiAQAAwLHKysp03HHH5TuMrAsFTNVVhEb+2/B6FJk/U6cvmK3I/JkyvJ6R9+oqQgoF7Hv79/fOdTzMFQCQS2ynAQBALrGvAQCFj201AEyMRjQAAACXsJIpxRKWdg8MavvuqHYPDCqWsGQlU/kOLeuGhpMatNIyZx6jt5LFev2dhPYPWRoaTuY7tKzwG161NlarNODTpz90gh6/7kO6ZeX7dd2HF+uWle9Xxxc+qE9/6ASVBnxa01gjv2Hf3f6Dc50M5goAyCW20wAAIJfY1wCAwse2GgAmRgsuAACAC8QSljZ39+vWjl519UVHXq+rCKm1sVrLImEF/c7YNdw/ZGnTtn7d8cTouX7y7GqdWxvWjCJ7z9U0vFoeCath4Vx1vPKGVv/o+VFz/cRZC/TItedoZrEp08YHPEzDq2WRsFoaKrV+684jjmtpqFJTpIy5AgByhu00AADIJfY1AKDwsa0GgInZ+wwcAAAAJhRLWFq3sXvMhXFXX1RrN3SqpaFKbc2Lbd+MFhuy9PWHu3Xvs2PP9dofd2pVfaXamiO2b0ZLS/reo78/Yl6/8JMXRvJqd0G/qbbmiOoXzlV7R8+oprs1jTVqipTZ/vsruWuuAGBHbKcBAEAusa8BAIWPbTUAjI+tHwAAgINZyZQ2d/ePe3WWJK3fukP1C+doxZJy216lNTSc1C+29Y/ZhHaoe57ZqdMXHJhrkc+Ypuiyy015PSjoN7ViSbmaImXas39I0diwZpcUKRTwyW94bT+/Qx0612jcUnRwWKFin0IB03FzBQA7YjsNAAByyU3rXwCwK7bVAHBkbAEBAAAcLJFMqX1L76TGtnf0KJFM5Tii3LFSad3++OTmevsTvUqm0jmOKHfclNdDmYZXRYZHA7t2yLuvX/NK/Ar67f3o0SMxDa+CflPlpcU6KTxT5aXFjp0rANgR22kAAJBLblr/AoBdsa0GgLFxRzQAAAAHi8YtbdsVnXigDjzOMRq3bHvL8Gh8OKO5DgwOK2jTx3O6Ka9jicfj+Q4BAAAAAICcY/0LAIWPbTUAHI52XAAAAAcbiCcyGh8dHM5RJLm3J5ZZ7HszHF9I3JRXAAAAAAAAAAAA2INtbovw9ttv6/bbb9ejjz6qvr4+FRcX633ve58++clP6swzzxw1/umnn9btt9+ul19+WYODg6qurtbHPvYxXXLJJfJ4PHmYAQAAwPQrDfgzGh8q9uUoktybHcws9lkZji8kbsorAAAAAAAAAAAA7MEWd0Tr7e3VBRdcoB/+8IcaHh5WY2Ojjj32WD355JO64oortGnTpsPGb9iwQVdccYWee+451dbWqr6+Xj09PfrSl76ktra2PM0CAABg+oUCpuoqQpMaW1cRUihgm+sURgkFfJnN1cbNWW7K61gCgYBKSkryHQYA4AjYTgMAkB/UYAAAAAD5VvCNaJZl6e///u/1+uuv6/LLL9cjjzyiW265RQ8++KBuuukmpdNp/d//+381NDQkSXr11Vd1ww03qKSkRPfdd59+8IMfqL29XRs3blRlZaUeeOAB/fznP8/zrAAAAKaH3/CqtbF6UmPXNNbIbxT87uERmV6PPnn25OZ61dnVMr32vUuum/J6KCuZ0lAyrdL5VUqWlOmNfQnFEpasZCrfoWWdlUwplrC0e2BQ23dHtXtg0LFzBeAcbtpOAwBQSKjBAAAAAApFwd8a4ZFHHlF3d7dOPfVUtbW1HfZYzQsvvFAPP/ywXn31VXV3d+vkk0/WHXfcoWQyqSuvvFK1tbUjYysqKvTlL39Zn/zkJ3XHHXfowx/+cD6mAwAAMK1Mw6tlkbBaGiq1fuvOI45raahSU6RMpo0blop8hs6tDaulvlLrnxlnrvVVWl4bVpHPmMbosstNeT0olrC0ubtft3b0qqsvOvJ6XUVIrY3VWhYJK+gv+OXNpLhprgCcg20XAAD5QQ0GAAAAUEgKfvXxs5/9TJJ05ZVXHtaEdtDtt99+2H8/9thjkqRzzz131NizzjpLM2fO1Isvvqj+/n6Fw+EcRAwAAFBYPJLW/uWJOvn4WbrzqT+OOjB9xQcW6JwT58m+9wd7l9cjrW06USdXjj9XG98MbUTQb6qtOaL6hXPV3tEzaq5rGmvUFClzxAmHWMLSuo3dYzbddfVFtXZDp1oaqtTWvNj283XTXAE4B9suAADygxoMAAAAoNAU/MrjpZdekiSdcsop2rt3rzZu3KiXX35ZpmnqtNNO03nnnSfDOHA3izfffFNvvfWWfD6fqqtHP6rIMAxVV1frd7/7nbZv304jGgAAcDwrmdIj3f36hwe7tKq+UrddfpoGE0ntiSU0O+hXkc+re5/ZqRt+2q2vXbhEK5aU2/buWW6a60FBv6kVS8rVFClTNG4pOjisULFPoYApv+G1/fykA3nd3N0/7p3fJGn91h2qXzjH1nl101wBOAfbLgAA8oMaDAAAAKAQFXQjWiKR0J/+9CeZpqnt27fr2muv1Z49e0bev+eee1RbW6v29naFw2G9/vrrkqRjjjlGXu/YC6qysjJJGhmbLel0Wslkcsqfc+hnZOPzUBjIqzORV+chp9lxsEF8umSjBjs594lkWu1bejUQH9b3t/SovaNHi8pnqqTI1L4hS9t3v6NU+sDY9o4eNUXK5FE6v0EfJTfN9VAeSUWGR/NKfJpX4jvknezsn+bbwbxOht3z6qa5vpeTt8PTxY71VyL3TuDmbZeb8Ft1JvI6ddRf5BM12Pn4rToTec0OO9Zgcu9M5NWZyKszkdepm2z9LehGtH379kk6UNyvvvpqLV26VNddd50WLlyoV155RV//+tf14osv6lOf+pTuv/9+xWIxSVJxcfERP7OoqEiSRsZmSzweV2dnZ1Y/88UXX8zq56EwkFdnIq/OQ06P3qmnnjqtfy/bNdhJuQ8EAiqdX6Vtu959ZGMqLXXvemfM8V19Ue3ZP6SBXTsUj8enK8yscNNc3WSsvI7Hznl101wn4qTt8HSye/2VyL0dse1yJ36rzkRejw71F/lCDXYffqvORF6Pnt1rMLl3JvLqTOTVmcjr0Zls/S3o+zAnEglJB7oRjzvuOP3gBz/QkiVLNGPGDJ1yyim68847NW/ePHV1dWnTpk0jd0HzeDwTfnY6zZU/AADA2QzD0EAskdG/icaGp/2Kwmxw01zdxE15ddNcATgH2y4AAPKDGgwAAACgUBX0HdEOvbPZypUr5fP5Dnt/5syZ+shHPqIf/vCH+tWvfqVVq1ZJkgYHB4/4mUNDQ5KkYDCY1VgDgYAWLVo05c9JJpMj3ZdLly5lYegQ5NWZyKvzkFN7ykYNdnLu39iX2YHp2SVFmld+Qo6iyS03zdVN3JRXN831vZy8HXYq1sA4yM3bLjfht+pM5NV+qL84FDXY+fitOhN5tSeOQeNIyKszkVdnIq/Tp6Ab0WbOnCm/369EIqHjjjtuzDEHX9+zZ4/C4bAk6c0331Q6nR7zzmivv/66JKmsrCyrsXo8nqx/UQ3D4MvvQOTVmcir85BT+8h2DXZa7kMBn+oqQurqm/hxHXUVIYUCPtvO301zdRM35dVNcx2P07bDTsUaGAex7XIffqvORF7tgfqLQ1GD3YXfqjORV/vgGDQmg7w6E3l1JvKaWwX9aE7DMHTiiSdKkvr7+8cc8+abb0qS5syZo1mzZikcDiuRSGjHjh2jxiaTSfX29kpSVq4cAwAAKHR+w6vWxupJjV3TWCO/UdC7h+Ny01zdxE15ddNcATgH2y4AAPKDGgwAAACgEBX8yuODH/ygJOmhhx4a9V46ndbjjz8uSaqvr5ckNTY2SpI2bdo0avxTTz2ld955R4sXL1Z5eXmOIgYAACgcpuHVskhYLQ2V445raahSU6RMj5COMwAAdzVJREFUpo0PTLtprm7ipry6aa4AnINtFwAA+UENBgAAAFCICn7l8bGPfUyhUEjPPvusbrnlFqXTaUkHmtC+973v6aWXXtLxxx+vZcuWSZJWrVolwzB06623qrOzc+Rz+vr6dMMNN0iSWltbp30eAAAA+RL0m2prjujmlaeoriJ02Ht1FSHdvPIUtTUvVtBf0E9tnxQ3zdVN3JRXN80VgHOw7QIAID+owQAAAAAKTcGvPsrKyvStb31Lf/d3f6ebb75Z//3f/61FixbplVde0Y4dO1RaWqpvf/vb8vv9kqTFixfrmmuu0be+9S1ddtllOuOMM1RcXKxnnnlGsVhMl156qZqbm/M8KwAAgOkV9JtasaRcTZEyReOWooPDChX7FAqY8hteR10Zfehc9+wfUjQ2rNklRQoFfI6bq5u4Ka9u+r0CcA43bacBACgk1GAAAAAAhaTgG9Ek6ZxzztFDDz2k9vZ2Pf3009qyZYuOOeYYXXrppWptbdXxxx9/2PjVq1erpqZGd911l1544QV5PB7V1NRo5cqVuuiii/I0CwAAgPwy/3wAOug3VV5anO9wcso0vPIorYFdO2QYhuaVnyDDMPIdFqbITXl10+8VgHO4aTsNAEAhoQYDAAAAKBS2aESTpKqqKt14442THt/U1KSmpqYcRgQAAIBCF4/H8x0CcoC8AkBhYzsNAEB+UIMBAAAA5Bv3ZAYAAAAAAAAAAAAAAAAATAmNaAAAAAAAAAAAAAAAAACAKaERDQAAAAAAAAAAAAAAAAAwJWa+AwAAAMD0sJIpJZIpReOWBuIJlQb8CgVM+Q2vTIPrEwAAACaL/SoAAAAAAABgNBrRAAAAXCCWsLS5u1+3dvSqqy868npdRUitjdVaFgkr6GfXEAAAYCLsVwEAAAAAAABj4xJNAAAAh4slLK3b2K21GzoPO1kqSV19Ua3d0Kl1G19WLGHlKUIAAAB7YL8KAAAAAAAAODIa0QAAABzMSqa0ubtf67fuHHfc+q079Mvu12UlU9MUGQAAgL2wXwUAAAAAAACMj0Y0AAAAB0skU2rf0jupse0dPUpwwhQAAGBM7FcBAAAAAAAA46MRDQAAwMGicUvbdkUnHqgDj5OKxnmMFAAAwFjYrwIAAAAAAADGRyMaAACAgw3EExmNjw4O5ygSAAAAe2O/CgAAAAAAABgfjWgAAAAOVhrwZzQ+VOzLUSQAAAD2xn4VAAAAAAAAMD4a0QpQIBBQSUlJvsMAAAAOEAqYqqsITWpsXUVIoYCZ44gAAADsif0qAAAAAAAAYHw0ohUQK5nSUDKt0vlVSpaU6Y19CcUSlqxkKt+hAQAAm/IbXrU2Vk9q7JrGGvkNdg+BQmAlU4olLO0eGNT23VHtHhhkbQAAecZ+FQAAAAAAADA+Ls0sELGEpc3d/bq1o1ddfdGR1+sqQmptrNaySFhBP+kCAACZMQ2vlkXCammo1PqtO484rqWhSk2RMpmcMAXyjrUBABQm9qsAAAAAAACA8XH2ogDEEpbWbewe8yBmV19Uazd0qqWhSm3NiznhBAAAMuaRtPYvT9TJx8/SnU/9cVRjyxUfWKBzTpyXvwABjGBtAACFLeg31dYcUf3CuWrv6Bm1X7WmsUZNkTK20QAAAAAAAHAljorlmZVMaXN3/7hX0krS+q07VL9wjlYsKeeKWgAAMGkJK6lfdPXrHx/q0qr6St12+WkaTCS1J5bQ7KBfRT6v7n1mp274abe++ld1WrG0XH7TyHfYgCuxNgAAewj6Ta1YUq6mSJmicUvRwWGFin0KBUz5DS/bZgAAAAAAALgWjWh5lkim1L6ld1Jj2zt6eLQDAADIyHAyrdse79VAfFjf39Kj9o4eLSqfqZIiU/uGLG3f/Y5S6QNjb3uiV8trw+IGHkB+sDYAAPsw/9xwFvSbKi8tznc4AAAAAAAAQEHgNGOeReOWtu2KTjxQBx7FE41bPN4BAABMWjQ+fNi+Riotde96Z8yxXX1RDQwOK1jEvgaQD6wNAAAAAAAAAACAnXH5fJ4NxBMZjY8ODucoEgAA4ER7YpntO+zNcDyA7GFtAAAAAAAAAAAA7IxGtDwrDfgzGh8q9uUoEgAA4ESzg5ntO8zKcDyA7GFtAAAAAAAAAAAA7IxGtDwLBUzVVYQmNbauIqRQgEfvAACAyQsFfIftaxhejyLzZ+r0BbMVmT9Thtcz8l5dRchxjS2BQEAlJSX5DgOYFNYGAAAAAAAAAADAzjhzkWd+w6vWxmqt3dA54dg1jTXyG/QOAgCAyfMZHl11drX+8aEutTRU6bL6Sg0mkno7ltCcoF9FPq82PPua1m/dodVnV8tneCb+UBuwkiklkmmVzq/SQCyhN/YlFAr45De8Mh22P3VgrilF45YG4gmVBvwKBUxHztXpWBsAAAAA2ZOwkhpOphWND2tPbFizgz6FAj75DI/8ppHv8AAAAADAkWhEyzPT8GpZJKyWhkqt37rziONaGqrUFCnjZCIAAMiI3zR0bl1YZ9bM1eOvvKHVP3peXX3RkffrKkL6xFkL9Mi156ik2HTEwfhYwtLm7n7d2tE7aq6tjdVaFgkr6HfGbrCb5uoGrA0AAACA7Ng/ZOmRbf26/YnRa6Wrzq7W8tqwZhSxVgIAAACAbGOlVQCCflNtzRHVL5yr9o6eUQvjNY01aoqUcRIRAAActZsf/f2YjS1dfVF94ScvqKWhSm3Ni/MQWXbFEpbWbew+4lzXbugcmavd963cNFc38Uha+5cn6uTjZ+nOp/44am1wxQcW6JwT58kZ9y4EAAAAsi82ZOnrD3fr3mfHXitd8+NOraqvVFtzhGY0AAAAAMgyVlkFIug3tWJJuZoiZdqzf0jR2LBmlxQ59hFSAABgeljJlDZ39497dyVJWr91h+oXztGKJeW23e9grqM5Ya5uYiVTeqS7X//wYJdW1VfqtstP02AiqT2xhGb/+VG69z6zUzf8tFtfu3AJeQUAAADeI2EltWlb/5hNaIe655mdOmPBHK1YWu6IO4MDAAAAQKGgEa2AmIZXHqU1sGuHDMPQvPITZBgsggEAwNFLJFNq39I7qbHtHT22ftwfcx2b3efqJgfzOhAf1ve39Ki9o0eLymeqpMjUviFL23e/o1T6wFjyCgAAAIw2nEzrtscnt1a67YleLa8NixtIAwAAAED2sMQqQPF4PN8hAAAAh4jGLW3bFZ14oA48oiQat2z7GEfmOja7z9VN3pvXVFrq3vXOmGPJKwAAADBaND6c0VppYHBYQR7PCQAAAABZw+XzAAAADjYQT2Q0Pjo4nKNIco+5Hpmd5+om5BUAAACYmj2xzPaR92Y4HgAAAAAwPhrRAAAAHKw04M9ofKjYl6NIco+5Hpmd5+om5BUAAACYmtnBzPaRZ2U4HgAAAAAwPhrRAAAAHCwUMFVXEZrU2LqKkEIB+z6S5L1zNbweRebP1OkLZisyf6YMr2fkPafNdTx2n6ubuOk7DAAAAORCKODLbK3ExR0AAAAAkFWcuQAAAHAwv+FVa2O11m7onHDsmsYa+Q37XqdwcK7/8GCXWhqqdFl9pQYTSb0dS2hO0K8in1cbnn1N67fucMxc3ZBXN3HTdxgAAADIBZ/h0VVnV+uaH3dOOHb12dXyGZ4JxwEAAAAAJo9GNAAAAAczDa+WRcJqaajU+q07jziupaFKTZEymTZubDENr5ZHwmpYOFcdr7yh1T96Xl190ZH36ypC+sRZC/TItedoZrFp+7m6Ja9u4qbvMAAAAJALftPQ8tqwLjujUvc+e+S10qr6Si2rDctvGtMYHQAAAAA4H41oAAAADhf0m2prjqh+4Vy1d/SMamxZ01ijpkiZgn777xqmJX3v0d+P2ZzV1RfVF37ygloaqtTWvHj6g8syN+XVTdz0HQYAAAByYUaRqevPj6h+4Rzd9kTvqLXS6rOrtaw2rBlFrJUAAAAAINtYaQEAALhA0G9qxZJyNUXKFI1big4OK1TsUyhgym94HXFnJSuZ0ubu/nHvECZJ67fuUP3COVqxpNz283ZDXt3Ejd9hAAAAIBdmFJlasbRcy2vDGhgc1t7YsGYFfQoV++QzPNwJDQAAAAByhEY0AAAAlzD/3JgU9JsqLy3OdzhZl0im1L6ld1Jj2zt6HPPISqfn1U3c+h0GAAAAcsFvGvKbUrDI1PzSQL7DAQAAAABX4KwFAAAAHCEat7RtV3TigTrwiMNo3MpxREBm+A4DAAAAAAAAAAA7oxENAAAAjjAQT2Q0Pjo4nKNIgKPDdxgAAAAAAAAAANgZjWgAAABwhNKAP6PxoWJfjiIBjg7fYQAAAAAAAAAAYGc0ogEAAMARQgFTdRWhSY2tqwgpFDBzHBGQGb7DAAAAAAAAAADAzmhEAwAAgCP4Da9aG6snNXZNY438BrvCdhUIBFRSUpLvMLKO7zAAp3DqdhoAAAAAAADA+DhzAQAA4BJWMqVYwtLugUFt3x3V7oFBxRKWrGQq36FlhWl4tSwSVktD5bjjWhqq1BQpk0kTj+1YyZSGkmmVzq9SsqRMb+xL8B0GgALi9O00AAAAAAAAgPHxLBcAAAAXiCUsbe7u160dverqi468XlcRUmtjtZZFwgr67b9rGPSbamuOqH7hXLV39Iya65rGGjVFyhwxV7fhO8x3GEBhc8t2GgAAAAAAAMCRcQQQAADA4WIJS+s2dmv91p2j3uvqi2rthk61NFSprXmxI04QB/2mViwpV1OkTHv2DykaG9bskiKFAj75DS93kbIhN3+Ho3FL0cFhhYp9CgVMvsMACpLbttMAAAAAAAAAxsYZDAAAAAezkilt7u4f88TwodZv3aFfdr/umEdnmYZXRYZHA7t2yLuvX/NK/Ar6TRp4bMjN3+Gg31R5abFOCs9UeWkx32EABcmt22kAAAAAAAAAo3EWAwAAwMESyZTat/ROamx7R48SDjs5HI/HtW/fvnyHgSlw+3cYAAod22kAAAAAAAAAB9GIBgAA4GDRuKVtu6KTGtvVF1U0buU4IiAzfIcBoLCxnQYAAAAAAABwEI1oAAAADjYQT2Q0Pjo4nKNIgKPDdxgAChvbaQAAAAAAAAAH0YgGAADgYKUBf0bjQ8W+HEUCHB2+wwBQ2NhOAwAAAAAAADiIRjQAAAAHCwVM1VWEJjW2riKkUMDMcURAZvgOA0Bhe+922vB6FJk/U6cvmK3I/JkyvJ6R99hOAwAAAAAAAM6Wk6N/qVRq3Pe9Xvrf3M5KppRIphSNWxqIJ1Qa8CsUMOU3vDINvh8AAGSL3/CqtbFaazd0Tjh2TWON/NRhFBi+wwBQ2A5up//hwS61NFTpsvpKDSaSejuW0JygX0U+rzY8+5rWb93BdhoAAAAAHI5zwACArDSi9fT06F//9V/1/PPPa8+ePbIs64hjPR6Ptm3blo0/C5uKJSxt7u7XrR296uqLjrxeVxFSa2O1lkXCCvq5QhoAgGwwDa+WRcJqaajU+q07jziupaFKTZEyDgag4PAdBoDCZhpeLY+E1bBwrjpeeUOrf/T8qLX+J85aoEeuPUczi0220wAAAADgUJwDBgBIWWhE27Fjh/73//7fisViSqfT2YgJDhZLWFq3sXvMk4hdfVGt3dCploYqtTUvZkcEAIAsCfpNtTVHVL9wrto7ekYdBFjTWKOmSBm1FwWL7zAAFLa0pO89+vsjrvW/8JMXRtb6AAAAAADn4RwwAOCgKW/l29vbtX//fs2ePVuf+MQntGjRIgWDwWzEBoexkilt7u4f904WkrR+6w7VL5yjFUvKuVIaAIAsCfpNrVhSrqZImaJxS9HBYYWKfdwWHbZx6Hd4z/4hRWPDml1SpFDAx3cYAPKItT4AAAAAuBvrQgDAoabciPbUU0/JNE3dddddWrRoUTZigkMlkim1b+md1Nj2jh4erQQAQJaZf27WCfpNlZcW5zscIGOm4ZVHaQ3s2iHDMDSv/AQZhpHvsADA1VjrAwAAAIC7sS4EABxqylv4PXv2qKqqiiY0TCgat7RtV3TigTpwi9Zo3MpxRAAAALCjeDyuffv25TsMAIBY6wMAAACA27EuBAAcasqNaHPnzpXH48lGLHC4gXgio/HRweEcRQIAAAAAALKBtT4AAAAAuBvrQgDAoabciHb22Wert7dXO3bsyEY8cLDSgD+j8aFiX44iAQAAAAAA2cBaHwAAAADcjXUhAOBQU25E+9SnPqWSkhL9/d//vfr7+7MRExwqFDBVVxGa1Ni6ipBCATPHEQEAAAAAgKlgrQ8AAAAA7sa6EABwqIy28tddd92Yr5eXl6urq0tNTU1asmSJwuGwioqKxhzr8Xh00003ZR4pbM9veNXaWK21GzonHLumsUZ+Y8p9kgAAAIAtWcmUEsmUonFLA/GESgN+hQKm/IZXJvvJgO04+TfNWh8AAAAA3I11IQDgUBk1oj300EPyeDxKp9Njvm9Zljo7O8d87+C/oxHNvUzDq2WRsFoaKrV+684jjmtpqFJTpMz2B+MBAACAoxFLWNrc3a9bO3rV1Rcdeb2uIqTWxmoti4QV9HPlKGAXTv9Ns9YHAAAAAHdjXQgAOFRGRzovvPBCeTyeXMUCFwj6TbU1R1S/cK7aO3pGHYRf01ijpkiZrQ/CAwAAAEcrlrC0bmP3mAftuvqiWruhUy0NVWprXsw+M2ADbvlNs9YHAAAAAHdjXQgAOCijLf03vvGNXMUBFwn6Ta1YUq6mSJmicUvRwWGFin2OeSwJAAAAcDSsZEqbu/vHvXJUktZv3aH6hXO0Ykk5+85AAXPbb/rQtf6e/UOKxoY1u6RIoYCPtT4AAAAAuADngAEAkjTlrf1zzz2nl19+eVJjn3zySd1zzz1T/ZNwANPwKug3VV5arJPCM1VeWqyg32QHBAAAAK6VSKbUvqV3UmPbO3qUSKZyHBGAqXDjb9o0vCoyPBrYtUPeff2aV+JnrQ8AAAAALsI5YADAlLf4f/M3f6Ovfe1rkxr73e9+V9/97nen+icBAAAAwHGicUvbdkUnHqgDj/SLxq0cRwRgKtz8m47H49q3b1++wwAAAAAAAAAwzTJ6NOe+ffu0Z8+eUa8PDg7qtddeO+K/S6fT+tOf/qTe3l6l0+nMowQAAAAAhxuIJzIaHx0cVnlpcY6iATBV/KYBAAAAAAAAuE1GjWj79+/XRz7yEQ0NDY285vF41NXVpXPPPXdSn3HyySdnFCAAAAAAuEFpwJ/R+FCxL0eRAMgGftMAAAAAAAAA3CajR3OGw2FdccUVSqfTI/+TdNh/j/e/+fPn60tf+lJOJuIkgUBAJSUl+Q4DAAAAKEhO3V8OBUzVVYQmNbauIqRQIKPrigBMM37TAAAAAAAAANwm46OcV199tS655BJJBxrQli1bpqVLl+q73/3uEf+N1+tVMBhUaWnpUQfqBlYypUQyrdL5VRqIJfTGvoRCAZ/8hlemkVHPYME7MNeUonFLA/GESgN+hQKmI+cKAACA7HD6/rLf8Kq1sVprN3ROOHZNY438Dpgz4GT8pgEAAAAAAAC4TcaNaD6fT8cee+zIf59++ulatGjRYa8hc7GEpc3d/bq1o1ddfdGR1+sqQmptrNaySFhBvzOujnbTXAEAAJAdbtiHNA2vlkXCammo1PqtO484rqWhSk2RMkc03wFOxm8aAAAAAAAAgNtM+UzN3XffnY04XC2WsLRuY/eYB6a7+qJau6FTLQ1VamtebPuTa26aKwAAALLDTfuQQb+ptuaI6hfOVXtHz6imuzWNNWqKlNl+noBb8JsGAAAAAAAA4CY5OdKZSqUO+2/LsjQ4OKjdu3frscceU2tray7+rC1ZyZQ2d/ePe3W0JK3fukP1C+doxZJy214l7aa5AgAAIDvcuA8Z9JtasaRcTZEyReOWooPDChX7eJQ9YFP8pgEAAAAAAAC4RVYa0R5//HHdfPPNeuWVV5RIJCYcTyPauxLJlNq39E5qbHtHj60f1+GmuQIAACA73LoPaf65OSXoN1VeWpzvcABMEb9pAAAAAAAAAG4w5Ua0l156SVdffbWSyaTS6fT4f8w0dcopp0z1TzpKNG5p267oxAN14LFD0bhl20d2uGmuAAAAyA72IQEAAAAAAAAAAOxhyrcK+NGPfiTLsnTCCSfopptu0r/8y79Iks477zz98Ic/1Lp163TaaadJkk477TTdfffdU/2TjjIQn/gOcoeKDg7nKJLcc9NcAQAAkB3sQwIAAAAAAAAAANjDlG8V8Pzzz8swDH3ve9/TwoULJUnz58/Xa6+9prPOOkuSdNFFF2nt2rXavHmzHn74YZ1//vkZ/Y1XX31VH/7wh8cd86tf/Upz5swZ+e+nn35at99+u15++WUNDg6qurpaH/vYx3TJJZfI4/FkOMvcKQ34MxofKvblKJLcc9NcAQAAkB3sQwIAAAAAAAAAANjDlBvR3nrrLVVUVIw0oUnS4sWL9cQTTyiRSMjv98vj8eiLX/yiNm/erAceeCDjRrRt27ZJkk444QRFIpExxxQVFY383xs2bNA//dM/yefzqb6+Xj6fT1u3btWXvvQl/eY3v9GNN954FDPNjVDAVF1FSF19Ez9uqK4ipFDAvo8ZctNcAQAAkB3sQwIAAAAAAAAAANhDVs7SzJo167D/XrBggbZs2aJXX31VixYtkiRVVFSoqqpK27dvz/jzX3rpJUnS5Zdfro9+9KPjjn311Vd1ww03qKSkRHfffbdqa2slSX19ffr4xz+uBx54QI2NjRPeYW26+A2vWhurtXZD54Rj1zTWyG9M+WmqeeOmuQIAACA72IcEABQiK5lSIplSNG5pIJ5QacCvUMCU3/DKpBYBAAAAAByENTCATEy5EW3u3Ll64403DnvtuOOOkyT94Q9/GGlEk6QZM2bo//2//5fx3zh4R7SlS5dOOPaOO+5QMpnUlVdeOdKEJh1ohPvyl7+sT37yk7rjjjsKphHNNLxaFgmrpaFS67fuPOK4loYqNUXKbL0hd9NcAQAAkB3sQwIACk0sYWlzd79u7eg97I6ddRUhtTZWa1kkrKCfO3QCAAAAAOyPNTCATE35LM2SJUvU39+vJ554YuS16upqpdNpPffccyOvDQ4OaufOnSotLc34b2zbtk1FRUU68cQTJxz72GOPSZLOPffcUe+dddZZmjlzpl588UX19/dnHEeuBP2m2pojunnlKaqrCB32Xl1FSDevPEVtzYsdsQF301wBAACQHexDAgAKRSxhad3Gbq3d0DnqsdFdfVGt3dCpdRtfVixh5SlCAAAAAACygzUwgKMx5TM1F1xwgTZt2qS1a9fqsssu07XXXqtTTjlFpaWl+slPfqKTTz5ZtbW1uu222/TOO+/otNNOy+jzX3vtNUWjUS1atEgbNmzQgw8+qFdffVV+v1+nnnqq1qxZo/e9732SpDfffFNvvfWWfD6fqqurR32WYRiqrq7W7373O23fvl3hcHiq08+aoN/UiiXlaoqUac/+IUVjw5pdUqRQwOe4W1oeOtdo3FJ0cFihYh+37wQAAMARuWl/GQBQmKxkSpu7+8e9Q6ckrd+6Q/UL52jFknLqEwAAAADAllgDAzhaU25Ea2pq0vnnn6+HH35Y//7v/67Pf/7zMk1TK1euVHt7u774xS+OjPV4PLr88ssz+vyXXnpJkrR9+3bddNNNev/736+Ghga9/PLL+uUvf6mOjg7deOON+qu/+iu9/vrrkqRjjjlGXu/YG7mysjJJGhmbLel0Wslkckqf4ZFkKqWBXTtkGIbmllXL6/VImvpnFxqPpCLDo3klPs0r8R3yjvPmKumwOTlxfm5FXp2HnGaHYRjT+veyUYPJvTORV+dx0/6y2/B7nTo71l+J3DuRk3OaSKbVvqV3UmPbO3rUFCmTR+kcRzU9nJxXNyOvU0f9RSEhr85DTp2JvGaHHWswuXcmJ+eVNfDo/xv2Rl6nbrL1NyvPrvnWt76lD3zgA3rqqafk8XgkSZ/5zGfU39+vBx98UOl0WoZh6IorrhjzkZnj2bZtmyTphBNO0Pe//31VVVVJklKplG6//XZ9+9vf1vXXX6+/+Iu/UCwWkyQVFxcf8fOKiookaWRstsTjcXV2dmb1M1944YWsfh4Kw4svvpjvEJAD5NV5yOnRO/XUU6f172W7BpN7ZyKvzsT+sjPxez06dq+/Erl3IiflNBAIqHR+lbbtik48WAceUbJn/5AGdu1QPB7PcXTTy0l5xbvI69Gh/qJQkVfnIafORF6Pnt1rMLl3JifllTXwu5yUV7yLvB6dydbfrDSiSdLFF1+siy+++N0PNk3deOONuvbaa9XX16fKykrNmTMn48/97Gc/q0svvVQlJSWH/Xuv16vW1lb99re/1WOPPaYNGzaMNLkdbIYbTzrtjG5cAAAAAAAA5JZhGBqIJTL6N9HY8LTfqQEAAAAAgKliDQxgKrLWiJZIJNTb26t9+/aN2eTV09Ojnp4eSdLpp58++QBNU5WVlUd8v6mpSY899phefPFFXXTRRZKkwcHBI44fGhqSJAWDwUnHMBmBQECLFi2a8uckk8mR7sulS5eysXYI8upM5NV5yKk9ZaMGk3tnIq/ORF6dibzaD2tgHImTc/rGvswOws8uKdK88hNyFM30cnJe3Yy82g/1F+Mhr85DTp2JvNoTx6BxJE7OK2tgZ+bVzcjr9MlKI9p3vvMd/ehHPxq3Aewgj8cz8rjNbJg/f76kA7dEDYfDkqQ333xT6XR6zDujvf7665KksrKyrMUgHZhXtr+ohmHw5Xcg8upM5NV5yKl9ZLsGk3tnIq/ORF6dibzaA2tgTIbTchoK+FRXEVJX38SPJqmrCCkU8Dlq/gc5La84gLzaA/UXk0VenYecOhN5tQ+OQWMynJZX1sAHOC2vOIC85pZ3qh9w11136dZbb1U8Hlc6nZ7wf6lUKqPP//rXv67PfOYz+v3vfz/m+7t27ZIklZeXa9asWQqHw0okEtqxY8eosclkUr29vZKUlSvHcPSsZEqxhKXdA4Pavjuq3QODiiUsWcnMvh8AAAAAAADTwW941dpYPamxaxpr5DemfNgNAAAAAIC8YA0M4GhN+Y5o9913nzwejy6++GJ9+tOfVllZmUwza0/8VFdXl37961/rxBNP1Gc/+9lR7//3f/+3JOmDH/ygJKmxsVH33XefNm3apNWrVx829qmnntI777yjxYsXq7y8PGsxIjOxhKXN3f26taP3sA7quoqQWhurtSwSVtCfve8QAAAAAADAVJmGV8siYbU0VGr91p1HHNfSUKWmSJlMDsIDAAAAAGyKNTCAozXlrcFrr72muXPn6oYbblBFRUVWm9AkadWqVZKkO+64Q1u3bh15PZlM6pvf/Kaee+45LViwQBdccMHIeMMwdOutt6qzs3NkfF9fn2644QZJUmtra1ZjxOTFEpbWbezW2g2do27j2dUX1doNnVq38WXFElaeIgQAAAAAABhb0G+qrTmim1eeorqK0GHv1VWEdPPKU9TWvJgL7AAAAAAAtscaGMDRmPIWoaSkRPPmzZPXm5sO1/PPP1/PPvus/uM//kOf+MQn9Bd/8RcKh8N66aWX9Kc//Unz5s3T97//fRUVFUmSFi9erGuuuUbf+ta3dNlll+mMM85QcXGxnnnmGcViMV166aVqbm7OSawYn5VMaXN3/7gd05K0fusO1S+coxVLyumcBgAAAAAABSXoN7ViSbmaImWKxi1FB4cVKvYpFDDlN7wcywAAAAAAOAZrYACZmnIj2umnn67HH39c+/fv14wZM7IR0yhf+cpX1NDQoHvvvVfbtm3Ttm3bNH/+fF1xxRVavXq15syZc9j41atXq6amRnfddZdeeOEFeTwe1dTUaOXKlbroootyEiMmlkim1L6ld1Jj2zt6uIUnAAAAAAAoSOafD7YH/abKS4vzHQ4AAAAAADnDGhhAJqbciHb11Vfrscce01e+8hXddNNN8ng82YhrlBUrVmjFihWTHt/U1KSmpqacxIKjE41b2rYrOvFAHXhMZzRucRtPAAAAAAAAAAAAAAAAwAam3OWzePFi/cu//Is+85nPqLOzUx/4wAc0Z86ccRvSPvOZz0z1z8KGBuKJjMZHB4fpqAYAAAAAAAAAAAAAAABsYMqNaPv27dNtt92mVCql1157Tf/xH/8x4b+hEc2dSgP+jMaHin05igQAAAAAAAAAAAAAAABANk25Ee073/mOOjs7JUnz5s1TRUWFfD4aiDBaKGCqriKkrr6JH89ZVxFSKMBjOQEAAAAAAAAg2wKBgAzDyHcYyDLyCgAAACDfptzp88tf/lIej0fr1q3TRRddlI2Y4FB+w6vWxmqt3dA54dg1jTXyG97cBwUAAAAAAAAALmElU0ok0yqdX6WBWEJv7EsoFPDJb3hlOux47IG5phSNWxqIJ1Qa8CsUMB08V3fkFQAAAEBhm3Ij2ttvv62qqiqa0DAh0/BqWSSsloZKrd+684jjWhqq1BQpY4EMAAAAAAAAAFkSS1ja3N2vWzt6D3tqRV1FSK2N1VoWCSvod8ZTKpirM+cKAAAAoPBNefVRVlbGrZ4xaUG/qbbmiOoXzlV7R8+ohfGaxho1RcpYGAMAAAAAAABAlsQSltZt7B7zAuGuvqjWbuhUS0OV2poX2/7YLHM9wGlzBQAAAGAPU155nHfeefrhD3+orq4u1dXVZSMmOFzQb2rFknI1RcoUjVuKDg4rVOxz7G3RAQAAAAAAACBfrGRKm7v7x31KhSSt37pD9QvnaMWSctseo2WuozlhrgAAAADsY8qrjk996lOqrKzUpz71Kf385z/X/v37sxEXHM40vAr6TZWXFuuk8EyVlxYr6DdZCAMAAAAAAABAFiWSKbVv6Z3U2PaOHiWSqRxHlDvMdWx2nysAAAAA+5jyHdG++tWv6vjjj9eTTz6pa6+9Vh6PRzNnzlQgEBhzvMfj0WOPPTbVPwsAAAAAAAAAACYQjVvatis6qbFdfVFF45ZtH+PIXMdm97kCAAAAsI8przoeeuihkf87nU4rnU5rYGBAAwMDY473eDxT/ZMAAAAAAAAAAGASBuKJjMZHB4dVXlqco2hyi7kemZ3nCgAAAMA+ptyIduONN2YjDgAAAAAAAAAAkGWlAX9G40PFvhxFknvM9cjsPFcAAAAA9jHlRrSLLrooG3EAjhcIBGQYRr7DAAAAAAAAAOAioYCpuoqQuvomfoxjXUVIoYB9H9/IXMdm97kCAAAAsA9vvgOAOw0NJ7V/yNKuvXFt64tq19649g9ZGhpO5ju0rLOSKQ0l0yqdX6VkSZne2JdQLGHJSqbyHVrWWcmUYglLuwcGtX13VLsHBh07VwAAAAAAAMAO/IZXrY3Vkxq7prFGfsO+pw2Y69jsPlcAgH1wrhAAwCUwmHb7hyxt2tavO57oPexqrbqKkD55drXOrQ1rRpEzvpqxhKXN3f26tWP0XFsbq7UsElbQz1wBAAAAAAAA5IZpeLUsElZLQ6XWb915xHEtDVVqipTJtHHDEnMdzQlzBQDYA+cKAQASjWiYZrEhS19/uFv3Pjt6YdzVF9W1P+7UqvpKtTVHbN+MFktYWrexe8yDAF19Ua3d0KmWhiq1NS+2/U6Xm+YKAAAAAAAA2E3Qb6qtOaL6hXPV3tEz6uTwmsYaNUXKHHHsjrke4LS5AgAKG+cKAQAHsZXHtBkaTuoX2/rHbEI71D3P7NTpC+ZoxZJyFfmMaYouu6xkSpu7+8e9Ek2S1m/dofqFB+Zq1yvS3DRXAAAAAAAAwK6CflMrlpSrKVKmPfuHFI0Na3ZJkUIBn/yG11HH7A6dazRuKTo4rFCxT6GA6ei5Oj2vAIDCxLlCAMCh2MJj2liptG5/vHdSY29/olfJVDrHEeVOIplS+5bJzbW9o0cJGz8X3U1zBQAAAAAAAOzMNLwqMjwa2LVD3n39mlfiV9BvOvJksGl4FfSbKi8t1knhmSovLXb0XN2SVwBA4eFcIQDgUKxCMG2i8WFt2xWdeKAO3KJ1YHA4xxHlTjRuZTTXaNzKcUS546a5AgAAAAAAAE4Qj8e1b9++fIeBLCOvAIB84FwhAOBQNKJh2uyJZdZYtjfD8YVkIJ7IaHzUxk13bporAAAAAAAAAAAAgHdxrhAAcCga0TBtZgd9GY2fleH4QlIa8Gc0PlTMXAEAAAAAAAAAAADYC+cKAQCHohEN0yYU8KmuIjSpsXUVIVvvhIQCZmZzDZg5jih33DRXAAAAAMDEZs2apXnz5uU7DAAAAAAoKIFAQCUlJfkOI+s4VwgAOBSNaJg2ptejT55dPamxV51dLdPryXFEueM3vGptnNxc1zTWyG/Y96foprkCAAAAwNGwkinFEpZ2Dwxq++6odg8MKpawZCVT+Q4tqxJWUoNWWsG5Fdpnlur1dxLaP2QpYSXzHRoAAAAA5I2VTGkomVbp/ColS8r0xr6Eo9aEnCsEAByKdmNMmyKfoXNrw7rsjErd++zOI45bVV+p5bVhFfmMaYwuu0zDq2WRsFoaKrV+65Hn2tJQpaZImUwb73C5aa4AAAAAkKlYwtLm7n7d2tGrrr7oyOt1FSG1NlZrWSSsoN/+h2f2D1l6ZFu/bn9i9DyvOrtay2vDmlFk/3kCAAAAQCbcsCbkXCEA4FD2rmqwHdMjXX9+RGcsnDPuwWnDvjdDGxH0m2prjqh+4Vy1d/SMmuuaxho1Rcpsv3MpuWuuAAAAADBZsYSldRu7xzwQ39UX1doNnWppqFJb82Jbr5diQ5a+/nD3mBeddfVFdc2PO7WqvlJtzRGa0QAAAAC4hlvWhBLnCgEA72JLj2mTsJL6WVe/bnu8R99beYruaz1T0fiw9saHNSvgUyjg066BuC5tf1qt59RoxdJy+U373hVNOrDTtWJJuZoiZdqzf0jR2LBmlxQpFPDJb3gd1fF/6FyjcUvRwWGFin0KBUzHzRUAAAAAJmIlU9rc3T/u1eCStH7rDtUvnKMVS8ptuW5KWElt2tY/7p3PJemeZ3bqjAVzHLHWBwAAAICJuGVNeCjOFQIAJBrRMI2Gk2nd9nivtu16R8u+/bj8hvTxsxYqHCpSf3RI//70q0okD4y97YleLa8NywlN8abhlUdpDezaIcMwNK/8BBmGMw+6m3/eiQz6TZWXFuc7HAAAAADIm0QypfYtvZMa297RY9vHkxxc60+Gk9b6AAAAADAet6wJ34tzhQAADv1h2kTjw9q2693bsCaS0u1PvDrm2K6+qAYGhxV00CM74vF4vkMAAAAAAEyTaNw6bA08nq6+qKJxy5aPKHnvWn88TlzrAwAAAMBY3LImBADgvezfVg3b2BMbzmj83gzHAwAAAABQKAbiiYzGRwftuQZmrQ8AAAAAo7llTQgAwHvRiIZpMzvoy2j8rAzHAwAAAABQKEoD/ozGh4rtuQZmrQ8AAAAAo7llTQgAwHvRiFaAAoGASkpK8h1G1oUCPtVVhCY1tq4ixA4XAAAAAMC2QgEzszVwwJ6PYGGtDwAAAACjvXdNaHg9isyfqdMXzFZk/kwZXs/Ie3ZeEwIA8F40ohUQK5nSUDKt0vlVSpaU6Y19CcUSlqxkKt+hZYXP8Oiqs6snNXb12dXyGZ6JBwIAAAAAUID8hletjZNbA69prJHfsOchGtb6AIBCZSVTiiUs7R4Y1PbdUe0eGHTU8XYAQGE7uCYsDfj06Q+doMev+5BuWfl+Xffhxbpl5fvV8YUP6tMfOkGlAZ+t14QAALwXrdUFIpawtLm7X7d29KqrLzryel1FSK2N1VoWCSvot3e6/Kah5bVhXXZGpe59ducRx62qr9Sy2rD8pjGN0QEAAAAAkD2m4dWySFgtDZVav/XIa+CWhio1Rcpk2vSkA2t9AEAhcsPxdgBAYTMNr5ZHwmpYOFcdr7yh1T96flRN+sRZC/TItedoZrFp2zUhAADvxUqrAMQSltZt7B7zwHRXX1RrN3SqpaFKbc2Lbb84nlFk6vrzI6pfOEe3PTH6IMDqs6u1rDasGUX2nicAAAAAAEG/qbbmiOoXzlV7R8+oNfCaxho1RcpY6wMAkEVuOt4OAChsaUnfe/T3R6xJX/jJCyM1CQAAp2CVlWdWMqXN3f3jXh0tSeu37lD9wjlasaTc9h3xM4pMrVharuW1YQ0MDmtvbFizgj6Fin3yGR6ujgYAAAAAOEbQb2rFknI1RcoUjVuKDg4rVOxTKGDKb3htv8Y/6LC1fnxYe+Os9QEA08+Nx9sBAIWJmgQAcCuqWZ4lkim1b+md1Nj2jh4lkqkcRzQ9/KahYJGp+aUBReaHNL80oBlFJgemAQAAAACOYxpeBf2mykuLdVJ4pspLixX0O+/RK37TUJHpUeytPs0Y3quyEj9rfQDAtHLr8XYAQOGhJgEA3MpZRzxtKBq3tG1XdOKBOnCL1mjcynFEAAAAAAAAR2/v3r1644038h0GAMCFON4OACgU1CQAgFvRiJZnA/FERuOjg8M5igQAAAAAAAAAAPvieDsAoFBQkwAAbkUjWp6VBvwZjQ8V+3IUCQAAAAAAAAAA9sXxdgBAoaAmAQDcika0PAsFTNVVhCY1tq4ipFDAzHFEAAAAAAAAAADYz3uPtxtejyLzZ+r0BbMVmT9Thtcz8h7H2wEAucQ5YPcIBAIqKSnJdxgAUDCoaHnmN7xqbazW2g2dE45d01gjv+GM3sGEldRwMq1ofFh7YsOaHfQpFPDJZ3jkN418hwcAAAAAQNZYyZQSyZSicUsD8YRKA36FAqb8hlemQ9b5AAAUgoPH2//hwS61NFTpsvpKDSaSejuW0JygX0U+rzY8+5rWb93hqOPtAIDC49ZzwG5yYK2fVun8Kg3EEnpjX0KhgI+1PgDXoxEtz0zDq2WRsFoaKrV+684jjmtpqFJTpMwRRWv/kKVHtvXr9id61dUXHXm9riKkq86u1vLasGYU8dUEAAAAANhfLGFpc3e/bu0YvQZubazWskhYQT9rYAAAssE0vFoeCath4Vx1vPKGVv/o+VH19xNnLdAj156jmcWmI463AwAKkxvPAbsJa30AODK2fgUg6DfV1hxR/cK5au/oGVWs1jTWqClS5ohiFRuy9PWHu3Xvs6N3uLr6orrmx51aVV+ptuYIzWgAAAAAAFuLJSyt29g95kmHrr6o1m7oVEtDldqaFztizQ8AQCFIS/reo78/Yv39wk9eGKm/AADkkpvOAbsJa30AGB9bvgIR9JtasaRcTZEy7dk/pGhsWLNLihx1+86EldSmbf1jNqEd6p5nduqMBXO0Ymk5j+kEAAAAANiSlUxpc3f/uFe+S9L6rTtUv3COViwpd8TaHwCAfKL+AgAKjRvOAbsJ+xoAMDG2egXENLwqMjwa2LVD3n39mlfiV9DvnNuDDyfTuu3x3kmNve2JXlnJdI4jAgAAAAAgNxLJlNq3TG4N3N7Ro0QyleOIAABwPuovAKAQOf0csJuwrwEAE6O6FaB4PK59+/blO4ysi8aHtW1XdOKBOnDb0oHB4RxHBAAAAABAbkTjVkZr4GjcynFEAAA4H/UXAFDInHoO2E3Y1wCAidGIhmmzJ5ZZY9neDMcDAAAAAFAoBuKJjMZHuRgLAIApo/4CAIBcYl8DACZGIxqmzeygL6PxszIcDwAAAABAoSgN+DMaHypmDQwAwFRRfwEAQC6xrwEAE6MRDdMmFPCpriI0qbF1FSEKMwAAAADAtkIBM7M1cMDMcUQAALwrEAiopKQk32FkHfUXAADk0nv3NfymV81Ly/U3DZVqXlouv/lu+wX7GgDcikY0TBuf4dFVZ1dPauzqs6vlMzw5jggAAHexkinFEpZ2Dwxq++6odg8MKpawZCVT+Q4NAADH8RtetTZObg28prFGfoNDNACA3LOSKQ0l0yqdX6VkSZne2Jdw1LqQ+gsAQH45/Rj0wX2N42cH9O9/e4Z+8w/L9aXza7XyjEp96fxa/eZLy/Xvf3uGjp8dYF8DgGvRgotp4zcNLa8N67IzKnXvszuPOG5VfaWW1YblN41pjA4AAGeLJSxt7u7XrR296uqLjrxeVxFSa2O1lkXCCvrZNQQAIFtMw6tlkbBaGiq1fuuR18AtDVVqipTJ5OA0ACDH3LAupP4CAJA/btnXODcS1l8uDuuRbf366K2/GjXXT55drZ9dc45Mj9jXAOBK9t7Sw3YMj9R2fkRnLJyj258YvRNy1dnVWlYbFjdDAwAge2IJS+s2do95EL6rL6q1GzrV0lCltubFtj8QAABAIQn6TbU1R1S/cK7aO3pGrYHXNNaoKVJG/QUA5Jyb1oXUXwAApp+b9jVSaWndw91j3nilqy+qa3/cqVX1lWprjuQhOgDIP3tv5WErVjKlTd39+v9+vl03XLhEP249U9H4sAZiwyoN+hQq9un5HW9rxXcf13UfXqwVS8rpEgcAYIqsZEqbu/vHvRJcktZv3aH6hXOovwAAZFnQb2rFknI1RcoUjVuKDg4rVOxTKGDKb3ipuwCAnHPjupD6CwDA9HHTvkbCSmrTtv5xn/4lSfc8s1NnLJijFUvLeQoYANehEQ3TJpFMqX1Lr17bE9cn7nxOplc6t65cc2f49db+hDZ17Zb158eDt3f0cGt0AACy4GD9nQzqLwAAuWH++YR30G+qvLQ43+EAAFzGretC6i8AANPDTfsaw8m0bnt8cnO97YleLa8Ny+Y3gAOAjLHZw7SJxi1t2/XubdCtlLTxxd1jju3qiyoat2x/a1YAAPLtvfV3PNRfAAAAAHAe1oUAACCX3LSvEY0PZzTXgcFhBYvsOVcAOFr2bDWGLQ3EExmNjw4O5ygSAADcg/oLAAAAAO7GuhAAAOSSm/Y19sQyi31vhuMBwAloRMO0KQ34MxofKvblKBIAANyD+gsAAAAA7sa6EAAA5JKb9jVmBzOLfVaG4wHACWhEw7QJBUzVVYQmNbauIqRQwFm3KQ0EAiopKcl3GAAAl3F7/QUAAAAAt2NdCAAAcslN+xqhgC+zudq46Q4AjhaNaJg2fsOr1sbqSY1d01gjv+GMr6eVTGkomVbp/ColS8r0xr6EYglLVjKV79AAAC7g1voLAACQS1YypVjC0u6BQW3fHdXugUHW+gAKllvXhQkrqf1DlnbtjWtbX1S79sa1f8hSwkrmOzQAABzFTfsaPsOjq86e3FxXn10tn+HJcUQAUHjs224M2zENr5ZFwmppqNT6rTuPOK6loUpNkTKZNt4JOSiWsLS5u1+3dvSqqy868npdRUitjdVaFgkr6OdnCADIHTfWXwAAgFxirQ/Abty4Ltw/ZOmRbf26/YnR2+qrzq7W8tqwZhSxrQYAIBvctK/hNw0trw3rsjMqde+zR57rqvpKLasNy28a0xgdABQGVlqYVh5Ja//yRJ18/Czd+dQfRx0EuOIDC3TOifPkhN7wWMLSuo3dY+5wdfVFtXZDp1oaqtTWvJgD1ACAnAr6TbU1R1S/cK7aO3pG1d81jTVqipRRjwAAACbAWh+AXblpXRgbsvT1h7vHPDnc1RfVNT/u1Kr6SrU1R2hGAwAgS9y0rzGjyNT150dUv3CObhuj6X312dVaRtM7ABdj64dpYyVTeqS7X//wYJdW1VfqtstP02AiqT2xhGYH/SryeXXvMzt1w0+79bULl2jFknLbdsRbyZQ2d/eP2/UvSeu37lD9wjm2nisAwB6CflMrlpSrKVKmaNxSdHBYoWKfQgFTfsNLHQIAAJgAa30AdnfounDP/iFFY8OaXVKkUMDnmHVhwkpq07b+ce9QIkn3PLNTZyyYoxVLy7lTCQAAWeKmY9AzikytWFqu5bVhDcSHtTc+rFlBn0LFPvkMD/sXAFyNRjRMm0QypfYtvRqID+v7W3rU3tGjReUzVVJkat+Qpe2731EqfWBse0ePrW/NenCuk2H3uQIA7MP882I/6DdVXlqc73AAAABshbU+ACcwDa88Smtg1w4ZhqF55SfIMJxzonQ4mdZtj09uW33bE71aXhuWA27MAgBAwXDTMWi/acjwJBV7q08zfD6VlRzrqP0qADhaLLEwbaJxS9t2vXtr0lRa6t71zphju/qiisYt296e9b1zHY/d5woAAAAAgBuw1gfgJPF4PN8h5EQ0PpzRtnpgcFhBHpsFAACmYO/evZKkY489Nr+BAECB4LJMTJuBeCKj8dHB4RxFkntumisAAAAAAG7AWh8ACt+eWGbb3r0ZjgcAAAAAjI9GNEyb0oA/o/GhYl+OIsk9N80VAAAAAAA3YK0PAIVvdjCzbe+sDMcDAAAAAMZHIxqmTShgqq4iNPLfhtejyPyZOn3BbEXmz5Th9Yy8V1cRUihg31uiv3eu47H7XAEAAAAAcAPW+gBQ+EIBX2bbapqGAQAAACCraETDtPEbXrU2Vqs04NOnP3SCHr/uQ7pl5ft13YcX65aV71fHFz6oT3/oBJUGfFrTWCO/Yd+v58G5Tobd5woAAAAAGF/CSmr/kKVde+Pa1hfVrr1x7R+ylLCS+Q4NGWCtDwCFz2d4dNXZk9tWrz67Wj7DM/FAAAAAAMCkcWkmpo1peLU8ElbDwrnqeOUNrf7R8+rqi468X1cR0ifOWqBHrj1HM4tNmTY+YGsaXi2LhNXSUKn1W3cecVxLQ5WaImW2nisAAAAA4Mj2D1l6ZFu/bn+id9Qa+Kqzq7W8NqwZRRyesQPW+gBQ+PymoeW1YbXUV2r9M+Nsq+urtKw2LL9pTGN0AAAAAOB8HOnEtEpL+t6jvx/zgG1XX1Rf+MkLammoUlvz4ukPLsuCflNtzRHVL5yr9o6eUScc1jTWqClSpqCfnyEAAAAAOFFsyNLXH+7Wvc+OvQa+5sedWlVfqbbmCM1oNsFaHwAKn9cjrW06USdXztKdT/1x1Lb6ig8s0DknzpOHm6EBAAAAQNZxVAzTxkqmtLm7f9yrhiVp/dYdql84RyuWlNv+6uGg39SKJeVqipRpz/4hRWPDml1SpFDAJ7/htf38AAAAAABjS1hJbdrWP2YT2qHueWanzlgwRyuWlnNXFps4dK0fjVuKDg4rVOxTKGCy1geAPEtYSf2iq1//+FCXVtVX6rbLT9NgIqk9sYRmB/0q8nl17zM7dcNPu/XVv6qj/gIAAABAltGIhmmTSKbUvqV3UmPbO3oc8xgL0/DKo7QGdu2QYRiaV36CDIODGwAAAADgZMPJtG57fHJr4Nue6NXy2rC4iZZ9mH9uOAv6TZWXFuc7HADAnx2svwPxYX1/S4/aO3q0qHymSopM7RuytH33O0qlD4yl/gIAAABA9rHEwrSJxi1t2xWdeKAOPKIkGrcc9SiLeDye7xAAAAAAANMkGh/OaA08MDisII/nBABgSt5bf1NpqXvXO2OOpf4CAAAAQPbZ/3ZTsI2BeCKj8dHB4RxFAgAAAABAbu2JZbam3ZvheAAAMBr1FwAAAADyy7aNaGvXrtWiRYv0wAMPjPn+008/rSuuuEJnnnmmTjnlFP31X/+17r//fqXT6WmOFAeVBvwZjQ8V+3IUCQAAAAAAuTU7mNmadlaG4wEAwGjUXwAAAADIL1s2ot1///36xS9+ccT3N2zYoCuuuELPPfecamtrVV9fr56eHn3pS19SW1vbNEaKQ4UCpuoqQpMaW1cRUijALdEBAAAAAPYUCvgyWwNzMRYAAFPm9vobCARUUlKS7zAAAAAAuJjtGtFeffVVrVu3btz3b7jhBpWUlOi+++7TD37wA7W3t2vjxo2qrKzUAw88oJ///OfTGDEO8htetTZWT2rsmsYa+Q3bfT0BAAAAAJAk+QyPrjp7cmvg1WdXy2d4chwRAADO59b6ayVTGkqmVTq/SsmSMr2xL6FYwpKVTOU7NAAAAAAuY6tOn0Qioc997nPyer2qra0dc8wdd9yhZDKpK6+88rAxFRUV+vKXvzwyBtPPNLxaFgmrpaFy3HEtDVVqipTJpBENAAAAAGBTftPQ8tqwLjtj/DXwqvpKLasNy28a0xQZAADO5cb6G0tY2vjSLl3a/it94KYtar75aTXc+Kgubf+VNr60S7GEle8QAQAAALiIrTp9vvOd76irq0tf/vKXNX/+/DHHPPbYY5Kkc889d9R7Z511lmbOnKkXX3xR/f39OY0VYwv6TbU1R3TzylNG3SK9riKkm1eeorbmxQr6eSwnAAAAAMDeDI/Udn5E3/3oyWOugb/70ZP1xeaIvM64GQsAAAVhsvXXCTdDiyUsrdvYrbUbOtXVFz3sva6+qNZu6NS6jS/TjAYAAABg2tim2+fpp5/WnXfeqfPPP18XXHCBfvGLX4wa8+abb+qtt96Sz+dTdfXo228bhqHq6mr97ne/0/bt2xUOh6cjdLxH0G9qxZJyNUXKFI1big4OK1TsUyhgym94uRMaAAAAAMD2ElZSP+/q17c2bdcNFy7Rj1vPVDQ+rIHYsEqDPoWKfXp+x9ta8d3H9flzF2nF0nJH3JUFAIB8spIpberu1//384nr73UfXqwVS8ptezzaSqa0ubtf67fuHHfc+q07VL9wjq3nCgAAAMA+bNGI9vbbb+u6665TeXm5/umf/umI415//XVJ0jHHHCOvd+wFVVlZ2WFjsyWdTiuZTE75cw79jGx8XqHySCoyPJpX4tO8Et8h72Tn/4+Fxi15dRvy6jzkNDsMY3pPoGajBpN7ZyKvzkRenYm8Tp0d66/k7NwPJ9O67fFevbYnrk/c+ZxMr3RuXbnmzvDrrf0JberaLSt1YOxtT/RqeW1Yhsf+/z9wck7djLw6E3mdOupv4Ukk02rfMrn6297Ro6ZImTxK5zfoo3RwrpNh97m6lZN/q25GXrPDjjWY3DsTeXUm8upM5HXqJlt/bdGIdv311+utt97SXXfdpVAodMRxsVhMklRcXHzEMUVFRYeNzZZ4PK7Ozs6sfuaLL76Y1c9DYSCvzkRenYecHr1TTz11Wv9etmswuXcm8upM5NWZyOvRsXv9lZyV+1mzZik4t0Lbdr37iCwrJW18cfeY47v6ohqIDyv2Vp/27t07TVHmnpNyineRV2cir0eH+ltYAoGASudXZVR/9+wf0sCuHYrH49MVZlaMNdfx2HmuOMBJv1W8i7wePbvXYHLvTOTVmcirM5HXozPZ+lvw92G+55579Oijj+rKK69UfX39uGMP3gXN4/FM+LnpNFf+AAAAAACA7PP5fNoTS2T0b/bGh+Xz+SYeCAAAxmQYhgYyrL/R2PC031UnG9w0VwAAAAD2UtB3RPv973+vb37zm6qrq9NnP/vZCcfPmDFDkjQ4OHjEMUNDQ5KkYDCYnSD/LBAIaNGiRVP+nGQyOdJ9uXTpUhaGDkFenYm8Og85tads1GBy70zk1ZnIqzORV/thDTyx19/J7OTwrKBPZSXH6thjj81RRNPDyTl1M/LqTOTVfqi/E3tjX2b1d3ZJkeaVn5CjaHLLTXN1Kyf/Vt2MvNoTx6BxJOTVmcirM5HX6VPQjWj//M//rMHBQRUXF+uLX/ziYe91dXVJku677z49/fTTOv3003XeeedJkt58802l0+kx74z2+uuvS5LKysqyGqvH48n6F9UwDL78DkRenYm8Og85tY9s12By70zk1ZnIqzORV3tgDTyxUMCnuoqQuvomfmRWXUVIoWKfo+YvOS+nOIC8OhN5tQfq78Qyrr8B+9ZfN80Vzvut4gDyah8cg8ZkkFdnIq/ORF5zq6Ab0WKxmCTp17/+tX7961+POea3v/2tfvvb38o0TX30ox9VOBxWf3+/duzYoQULFhw2NplMqre3V5KycuUYgMNZyZQSyZSicUsD8YRKA36FAqb8hlemUfBPAgYAAACArPEZHl11drWu+XHnhGNXn10tnzH6YjoAAJAZv+FVa2O11m7onHDsmsYa+W18zNJNcwUAAABgHwXdiHb33Xcf8b2rr75av/zlL3XjjTfq4osvHnm9sbFR9913nzZt2qTVq1cf9m+eeuopvfPOO1q8eLHKy8tzFjfgRrGEpc3d/bq1o/ewq/DqKkJqbazWskhYQX9Bb3IAAAAAIGv8pqHltWFddkal7n125xHHraqv1LLasPwmV2ECADBVpuHVskhYLQ2VWr/1yPW3paFKTZEyW18866a5AgAAALAPx608Vq1aJcMwdOutt6qzs3Pk9b6+Pt1www2SpNbW1jxFBzhTLGFp3cZurd3QOepW8F19Ua3d0Kl1G19WLGHlKUIAAAAAmH4zikxdf35E//LRk1VXETrsvbqKkP7loyerrTmiGUVctAMAQLYE/abamiO6eeUpY9bfm1eeorbmxY64aNZNcwUAAABgD45bfSxevFjXXHONvvWtb+myyy7TGWecoeLiYj3zzDOKxWK69NJL1dzcnO8wAcewkilt7u4f96o7SVq/dYfqF87RiiXlXH0HAAAAwDVmFJlasbRcy2vDGhgc1t7YsGYFfQoV++QzPNwJDQCAHAj6Ta1YUq6mSJmicUvRwWGFin0KBUz5Da+jjk8eOtc9+4cUjQ1rdkmRQgGf4+YKAAAAoPA5rhFNklavXq2amhrdddddeuGFF+TxeFRTU6OVK1fqoosuynd4gKMkkim1b+md1Nj2jh5uAw8AAADAdfymIb8pBYtMzS8N5DscAABcwfxzE1bQb6q8tDjf4eSUaXjlUVoDu3bIMAzNKz9BhkGzOwAAAIDpZ9tGtO9///vjvt/U1KSmpqZpigZwr2jc0rZd0YkH6sBjOqNxi1vBAwAAAAAAAECWxePxfIcAAAAAwOW4LRGAKRmIJzIaHx0czlEkAAAAAAAAAAAAAAAAyBca0QBMSWnAn9H4ULEvR5EAAAAAAAAAAAAAAAAgX2hEAzAloYCpuorQpMbWVYQUCvBYTgAAAAAAAAAAAAAAAKehEQ3AlPgNr1obqyc1dk1jjfwGmx0AAAAAAAAAAAAAAACnoSMEwJSYhlfLImG1NFSOO66loUpNkTKZNKIBAAAAAAAAyDErmVIsYWn3wKC2745q98CgYglLVjKV79AAAAAAwLF4Rh6AKQv6TbU1R1S/cK7aO3rU1Rcdea+uIqQ1jTVqipQp6GeTAwAAAAAAACC3YglLm7v7dWtH76hjla2N1VoWCXOsEgAAAABygJUWgKwI+k2tWFKupkiZonFL0cFhhYp9CgVM+Q0vd0IDAAAAAAAAkHOxhKV1G7u1fuvOUe919UW1dkOnWhqq1Na8mGY0AAAAAMgyVlkAssb8c8NZ0G+qvLQ43+EAAAAAAAAAcBErmdLm7v4xm9AOtX7rDtUvnKMVS8q5gBYAAAAAsogVFgAAAAAAAAAAsL1EMqX2Lb2TGtve0aNEMpXjiAAAAADAXWhEAwAAAAAAAAAAtheNW9q2KzqpsV19UUXjVo4jAgAAAAB3oRENAAAAAAAAAADY3kA8kdH46OBwjiIBAAAAAHeiEQ0AAAAAAAAAANheacCf0fhQsS9HkQAAAACAO9GIBgAAAAAAAAAAbC8UMFVXEZrU2LqKkEIBM8cRTa9AIKCSkpJ8hwEAOIJZs2Zp3rx5+Q4DAICcohENAAAAAAAAAADYnt/wqrWxelJj1zTWyG844xSJlUxpKJlW6fwqJUvK9Ma+hGIJS1Yyle/QAACSElZSg1ZawbkV2meW6vV3Eto/ZClhJfMdWtYlrKT2D1natTeubX1R7dobd+xcAQBjc9blPgAAAAAAAAAAwJVMw6tlkbBaGiq1fuvOI45raahSU6RMpgMa0WIJS5u7+3VrR6+6+qIjr9dVhNTaWK1lkbCCfk4FAUC+7B+y9Mi2ft3+xOjt9FVnV2t5bVgzipyxnXbTXAEAR8aWHgAAAAAAAAAAOIJH0tq/PFEnHz9Ldz71x1Enwq/4wAKdc+I8efIXYtbEEpbWbewes+muqy+qtRs61dJQpbbmxTSjAUAexIYsff3hbt377Njb6Wt+3KlV9ZVqa47YvkHLTXMFAIyPrTwAAAAAAAAAALA9K5nSI939+ocHu7SqvlK3XX6aBhNJ7YklNDvoV5HPq3uf2akbftqtr124RCuWlNv2rmhWMqXN3f3j3vlNktZv3aH6hXNsPVcAsKOEldSmbf1jNmYd6p5nduqMBXO0Ymm5/KYxTdFll5vmCgCYGI1oAAAAAAAAAADA9hLJlNq39GogPqzvb+lRe0ePFpXPVEmRqX1Dlrbvfkep9IGx7R09tn4858G5Tobd5woAdjScTOu2xye3nb7tiV4trw3LrjevdNNcAQATYxMPAAAAAAAAAABsLxq3tG3Xu4/iTKWl7l3vjDm2qy+qaNyy7SMr3zvX8dh9rgBgR9H4cEbb6YHBYQVt+shKN80VADAxLn8BAAAAAAAAAAC2NxBPZDQ+Ojico0hyz01zBQA72hPLbLu7N8PxhcRNcwUATIxGNAAAAAAAAAAAYHulAX9G40PFvhxFkntumisA2NHsYGbb3VkZji8kbporAGBiNKIBAAAAAAAAAADbCwVM1VWEJjW2riKkUMC+jwVz01wBwI5CAV9m22kbNwy7aa4AgInRiAYAAAAAAAAAAGzPb3jV2lg9qbFrGmvkN+x7isRNcwUAO/IZHl119uS206vPrpbP8OQ4otxx01wBABNj5QEAAAAAAAAAAGzPNLxaFgmrpaFy3HEtDVVqipTJtHFzlpvmCgB25DcNLa8Nq6V+gu10fZWW1YblN41piiz7Ds71sjPGn+uq+krbzxUAMDHuxQwAAAAAAAAAABwh6DfV1hxR/cK5au/oUVdfdOS9uoqQ1jTWqClSpqDf/qdH3DRXALAjr0da23SiTq6cpTuf+uOo7fQVH1igc06cJ68DbhA2o8jU9edHVL9wjm57onfUXFefXa1ltWHNKKImAYDTsaUHAAAAAAAAAACOEfSbWrGkXE2RMkXjlqKDwwoV+xQKmPIbXkfdHezQue7ZP6RobFizS4oUCvgcN1cAsBMrmdIj3f36hwe7tKq+UrddfpoGE0ntiSU0O+hXkc+re5/ZqRt+2q2vXbhEK5aU236bPaPI1Iql5VpeG9bA4LD2xoY1K+hTqNgnn+HhTmgA4BI0ogEAAAAAAAAAAEcx/9yEFfSbKi8tznc4OWUaXnmU1sCuHTIMQ/PKT5BhcLIfAPIpkUypfUuvBuLD+v6WHrV39GhR+UyVFJnaN2Rp++53lEofGNve0eOYxyj7TUN+UwoWmZpfGsh3OACAPKARDQAAAAAAAAAAwObi8Xi+QwAA/Fk0bmnbrncfT5lKS9273hlzbFdfVNG4xaOUAQCOYP+2agAAAAAAAAAAAAAACsRAPJHR+OjgcI4iAQBgetGIBgAAAAAAAAAAAABAlpQG/BmNDxX7chQJAADTi0Y0AAAAAAAAAAAAAACyJBQwVVcRmtTYuoqQQgEeywkAcAYa0QAAAAAAAHLISqYUS1jaPTCo7buj2j0wqFjCkpVM5Ts0AAAAAEAO+A2vWhurJzV2TWON/Aan7QEAzkBrNQAAAAAAQI7EEpY2d/fr1o5edfVFR16vqwiptbFayyJhBf0cngEAAAAAJzENr5ZFwmppqNT6rTuPOK6loUpNkTKZNKIBAByCI50AAAAAAAA5EEtYWrexe8yTDl19Ua3d0KmWhiq1NS+mGQ0AAAAAHCboN9XWHFH9wrlq7+gZdXHSmsYaNUXKWA8CAByFqgYAAAAAAJBlVjKlzd394175Lknrt+5Q/cI5WrGknCvgAQAAAMBhgn5TK5aUqylSpj37hxSNDWt2SZFCAZ/8hpd1IADAcahsAAAAAAAAWZZIptS+pXdSY9s7epRIpnIcEQAAAAAgH0zDqyLDo4FdO+Td1695JX4F/SZNaAAAR+KOaAAAAAAAAFkWjVvatis68UAdeExnNG7xOBYAAAAAcLB4PJ7vEAAAyDnarAEAAAAAALJsIJ7IaHx0cDhHkQAAAAAAAADA9KARDQAAAAAAIMtKA/6MxoeKfTmKBAAAAAAAAACmB41oAAAAAAAAWRYKmKqrCE1qbF1FSKGAcx7LGQgEVFJSku8wAAAAAAAAAEwzGtEAAAAAAACyzG941dpYPamxaxpr5Dfsf4jGSqY0lEyrdH6VkiVlemNfQrGEJSuZyndoAAAXspIpxRKWdg8MavvuqHYPDFKXAADIMeovAMA5l9sCAAAAAAAUCNPwalkkrJaGSq3fuvOI41oaqtQUKZNp80a0WMLS5u5+3drRq66+6MjrdRUhtTZWa1kkrKCfw1AAgOlBXQIAYPpRfwEAEo1oAAAAAAAAORH0m2prjqh+4Vy1d/SMOhC/prFGTZEy2x+IjyUsrdvYPWbDXVdfVGs3dKqloUptzYttP1cAQOGjLgEAMP2ovwCAg9jKAwAAAAAA5EjQb2rFknI1RcoUjVuKDg4rVOxTKGDKb3htfyc0K5nS5u7+ce/6Jknrt+5Q/cI5WrGk3PZzBgAULuoSAADTj/oLADgUW3gAAAAAAIAcMg2vgn5T5aXFOik8U+WlxQr6TUcceE8kU2rf0jupse0dPUokUzmOCADgZtQlAACmH/UXAHAo+x/xBAAAAAAAQF5E45a27YpOPFAHHscSjVs5jggA4GbUJQAAph/1FwBwKBrRAAAAAAAAcFQG4omMxkcHh3MUCQAA1CUAAPKB+gsAOBSNaAAAAAAAADgqpQF/RuNDxb4cRQIAAHUJAIB8oP4CAA5FIxoAAAAAAACOSihgqq4iNKmxdRUhhQJmjiMCALgZdQkAgOlH/QUAHIpGNAAAAAAAABwVv+FVa2P1pMauaayR3+BQFAAgd6hLAABMP+ovAOBQbOUBAAAAAABwVEzDq2WRsFoaKscd19JQpaZImUxOOAAAcoi6BADA9KP+AgAOxX0vAQAAAAAAcNSCflNtzRHVL5yr9o4edfVFR96rqwhpTWONmiJlCvo5DAUAyD3qEgAA04/6CwA4iC09AAAAAAAApiToN7ViSbmaImXas39I0diwZpcUKRTwyW94ueIdADCtDq1L0bil6OCwQsU+hQImdQkAgByh/gIAJBrRAAAAAAAAkAWm4ZVHaQ3s2iHDMDSv/AQZhpHvsAAALmX++YR30G+qvLQ43+EAAOAK1F8AAI1oAAAAAAAAyJp4PJ7vEAAAAAAAAADkAfe/BAAAAAAAAAAAAAAAAABMCY1oAAAAAAAAAAAAAAAAAIApoRENAAAAAAAAAAAAAAAAADAlNKIBAAAAAAAAAAAAAAAAAKaERjQAAAAAAAAAAAAAAAAAwJTQiAYAAAAAAAAAAAAAAAAAmBIa0QAAAAAAAAAAAAAAAAAAU0IjGgAAAAAAAAAAAAAAAABgSmhEAwAAAAAAAAAAAAAAAABMCY1oAAAAAAAAAAAAAAAAAIApoRENAAAAAAAAAAAAAAAAADAlNKIBAAAAAAAAAAAAAAAAAKaERjQAAAAAAAAAAAAAAAAAwJTQiAYAAAAAAAAAAAAAAAAAmBIa0QAAAAAAAAAAAAAAAAAAU0IjGgAAAAAAAAAAAAAAAABgSmhEAwAAAAAAAAAAAAAAAABMCY1oAAAAAAAAAAAAAAAAAIApoRENAAAAAAAAAAAAAAAAADAlZr4DmKyf/exnuueee9TV1aV0Oq3jjz9ezc3NuuKKK1RcXDxq/NNPP63bb79dL7/8sgYHB1VdXa2PfexjuuSSS+TxePIwAwAAAAAAAAAAAAAAAABwJlvcEe3mm2/WNddco9/85jdasmSJzjzzTL399tv67ne/q0suuUQDAwOHjd+wYYOuuOIKPffcc6qtrVV9fb16enr0pS99SW1tbXmaBQAAAAAAAAAAAAAAAAA4U8HfEe3555/XLbfcolAopLvvvluLFy+WJMViMa1du1ZPPPGEvvvd7+of//EfJUmvvvqqbrjhBpWUlOjuu+9WbW2tJKmvr08f//jH9cADD6ixsVEf/vCH8zYnAAAAAAAAAAAAAAAAAHCSgr8j2n/9139Jkq666qqRJjRJCgaDWrt2rSRpy5YtI6/fcccdSiaTuvLKK0ea0CSpoqJCX/7yl0fGAAAAAAAAAAAAAAAAAACyo+DviPaVr3xFf/u3f6t58+aNei+ZTEqSDMMYee2xxx6TJJ177rmjxp911lmaOXOmXnzxRfX39yscDucoagAAAAAAAAAAAAAAAABwj4K/I5ppmqqpqVEoFDrs9V27dummm26SJF188cWSpDfffFNvvfWWfD6fqqurR32WYRgjr2/fvj3HkQMAAAAAAAAAAAAAAACAOxT8HdHe6xvf+IZ+97vf6Xe/+508Ho/+9m//VmvWrJEkvf7665KkY445Rl7v2D12ZWVlh43NlnQ6PXKHtqk49DOy8XkoDOTVmcir85DT7Dj0TqXTIRs1mNw7E3l1JvLqTOR16uxYfyVy70Tk1JnIqzOR16mj/qKQkFfnIafORF6zw441mNw7E3l1JvLqTOR16iZbfz3pdDqd41iy6vTTT1c0GpUk+f1+nXfeebruuutUVlam559/XqtWrdLChQv185//fMx//7nPfU4//elPdf311+vyyy+fcjzd3d2KxWJT/hwAAJzi1FNPnZa/Qw0GAOBd1F8AAKYf9RcAgPygBgMAMP0mW38L/tGc7/XQQw/pd7/7ne6//369//3v1//8z/9o5cqVisViI3dB83g8E36OzfrvAAAAAAAAAAAAAAAAAKBg2e7RnPPnz5ckve9979Ptt9+uv/7rv9Yrr7yi++67T2eeeaYkaXBw8Ij/fmhoSJIUDAazGlcgENCiRYum/DnJZFIvvviiJGnp0qXTfmtZ5AZ5dSby6jzk1J6yUYPJvTORV2cir85EXu2HNTCOhJw6E3l1JvJqP9RfjIe8Og85dSbyak8cg8aRkFdnIq/ORF6nj+0a0Q7l9/u1YsUKvfLKK9q2bZsuvPBCSdKbb76pdDo95p3RXn/9dUlSWVlZVmPxeDxZ/6IahsGX34HIqzORV+chp/aR7RpM7p2JvDoTeXUm8moPrIExGeTUmcirM5FXe6D+YrLIq/OQU2cir/bBMWhMBnl1JvLqTOQ1twr+0Zzf+973dM0112j37t1jvu/3+yVJlmVp1qxZCofDSiQS2rFjx6ixyWRSvb29kpSVK8cAAAAAAAAAAAAAAAAAADZoRHvqqaf0s5/9TA8//PCY73d0dEg6cOs8SWpsbJQkbdq0aczPeuedd7R48WKVl5fnKGIAAAAAAAAAAAAAAAAAcJeCb0RbtWqVJOmWW27RCy+8MPL68PCw/vmf/1nPPvus5s6dq7/+678eGW8Yhm699VZ1dnaOjO/r69MNN9wgSWptbZ2+CQAAAAAAAAAAAAAAAACAw5n5DmAif/VXf6Xnn39eP/7xj/XRj35Up5xyikKhkLq7u7V7927NmjVL//Zv/6ZQKCRJWrx4sa655hp961vf0mWXXaYzzjhDxcXFeuaZZxSLxXTppZequbk5z7MCAAAAAAAAAAAAAAAAAOco+EY0SfrqV7+qhoYGbdiwQV1dXUokEqqoqNDHP/5xXXnllQqHw4eNX716tWpqanTXXXfphRdekMfjUU1NjVauXKmLLrooT7MAAAAAAAAAAAAAAAAAAGfypNPpdL6DsLPOzk4lk0l5PB4FAoEpf146nVY8HpckBQIBeTyeKX8m8o+8OhN5dR5ymj3FxcVauHBhTv9GNmswuXcm8upM5NWZyGt22K3+SuTeicipM5FXZyKv2UH9RaEgr85DTp2JvGaP3WowuXcm8upM5NWZyGt2TKb+2uKOaIUslUpJOvCljcViWf3sgz8COAt5dSby6jzktPDlqgaTe2cir85EXp2JvBY21sDIBDl1JvLqTOS1sFF/kSny6jzk1JnIa+HjGDQyQV6dibw6E3nNLRrRpsjn82l4eFher1dFRUX5DgcAgIJQXFyc879BDQYA4HDUXwAAph/1FwCA/KAGAwAw/SZTf3k0JwAAAAAAAAAAAAAAAABgSrz5DgAAAAAAAAAAAAAAAAAAYG80ogEAAAAAAAAAAAAAAAAApoRGNAAAAAAAAAAAAAAAAADAlNCIBgAAAAAAAAAAAAAAAACYEhrRAAAAAAAAAAAAAAAAAABTQiMaAAAAAAAAAAAAAAAAAGBKaEQDAAAAAAAAAAAAAAAAAEwJjWgAAAAAAAAAAAAAAAAAgCmhEQ0AAAAAAAAAAAAAAAAAMCU0ogEAAAAAAAAAAAAAAAAApoRGNAAAAAAAAAAAAAAAAADAlNCIBgAAAAAAAAAAAAAAAACYEhrRAAAAAAAAAAAAAAAAAABTQiMaAAAAAAAAAAAAAAAAAGBKaEQrIK+++qo+//nP60Mf+pDe97736dxzz9V3vvMdxWKxfIeGKfjv//5v/c3f/I1OP/10LVmyRI2Njfo//+f/qKenJ9+hIUvWrl2rRYsW6YEHHsh3KJiit99+WzfddJPOO+88LV26VKeffrquvPJK/epXv8p3aMgh6q8zUX/dgRrsDNRfd6L+Ohc12Pmov85A/XUvarAzUX+dj/rrHNRgd6L+OhP11x2owc5A/Z1eNKIViBdeeEEXX3yx/ud//kfHHHOMPvjBDyoWi6m9vV0f+9jHtG/fvnyHiAyl02l97nOf03XXXaff/OY3qqmp0TnnnCPDMPTggw/q4osv1pNPPpnvMDFF999/v37xi1/kOwxkQW9vry644AL98Ic/1PDwsBobG3XsscfqySef1BVXXKFNmzblO0TkAPXXeai/7kENdgbqrztRf52JGuwO1F9noP66FzXYeai/7kD9dQ5qsDtRf52H+use1GBnoP7mQRp5Nzw8nG5qakqfdNJJ6fvvv3/k9Xg8nl6zZk36pJNOSn/lK1/JY4Q4Gg8++GD6pJNOSn/gAx9Id3d3j7xuWVb629/+dvqkk05Kn3nmmel9+/blMUpMRW9vb/rkk09On3TSSemTTjop/Z//+Z/5DglHaXh4OH3BBRekTzrppPTXvva1tGVZI+/913/9V/qkk05Kn3LKKenBwcE8Rolso/46E/XXHajBzkD9dSfqr3NRg52P+usM1F/3ogY7E/XX+ai/zkENdifqrzNRf92BGuwM1N/84I5oBeDhhx/Wa6+9pjPPPFOXXHLJyOvFxcVat26dgsGg7rvvPg0MDOQxSmTqJz/5iSTpc5/7nBYvXjzyumEYuuaaa3TiiSfqrbfe0lNPPZWvEDEFiURCn/vc5+T1elVbW5vvcDBFjzzyiLq7u3Xqqaeqra1NhmGMvHfhhRfqnHPO0Zw5c9Td3Z3HKJFt1F9nov46HzXYOai/7kT9dS5qsLNRf52D+ute1GBnov46G/XXWajB7kT9dSbqr/NRg52D+psfNKIVgEcffVSStHz58lHvzZ49W/X19RoeHtYTTzwx3aFhCkKhkGpqanTaaaeNes/j8WjhwoWSpP7+/ukODVnwne98R11dXfryl7+s+fPn5zscTNHPfvYzSdKVV14pj8cz6v3bb79dmzdv1sknnzzNkSGXqL/ORP11Pmqwc1B/3Yn661zUYGej/joH9de9qMHORP11Nuqvs1CD3Yn660zUX+ejBjsH9Tc/zHwHAOmVV16RJC1atGjM90844QQ99thjevnll/W//tf/ms7QMAX/+q//esT3ksmkurq6JIniZUNPP/207rzzTp1//vm64IILeDa4A7z00kuSpFNOOUV79+7Vxo0b9fLLL8s0TZ122mk677zzDuuQhzNQf52J+uts1GBnof66E/XXuajBzkX9dRbqr3tRg52J+utc1F/noQa7E/XXmai/zkYNdhbqb37QiFYAXn/9dUlSOBwe8/2ysrLDxsH+7r33Xv3pT3/SrFmzdOaZZ+Y7HGTg7bff1nXXXafy8nL90z/9U77DQRYkEgn96U9/kmma2r59u6699lrt2bNn5P177rlHtbW1am9vP+J2GvZE/XUf6q+9UYOdhfrrXtRfd6IG2xf111mov+5GDXYf6q99UX+dhxrsXtRf96H+2hs12Fmov/nDozkLQCwWk3TgeeBjOfj6wXGwt1/96lf65je/KUn6/Oc/rxkzZuQ5ImTi+uuv11tvvaWbbrpJoVAo3+EgC/bt2ydJSqfTuvrqq3XSSSfpP//zP/Wb3/xG//Ef/6GlS5dq27Zt+tSnPqVkMpnnaJFN1F93of7aHzXYWai/7kX9dR9qsL1Rf52F+utu1GB3of7aG/XXeajB7kX9dRfqr/1Rg52F+ps/NKIVgIO3+hvrmbSHSqfT0xEOcuixxx7TmjVrlEgktHLlSl166aX5DgkZuOeee/Too4/qyiuvVH19fb7DQZYkEglJB26XfNxxx+kHP/iBlixZohkzZuiUU07RnXfeqXnz5qmrq0ubNm3Kc7TIJuqve1B/7Y8a7DzUX/ei/roLNdjeqL/OQ/11N2qwe1B/7Y3660zUYPei/roH9df+qMHOQ/3NHxrRCsDBbuh4PD7m+4ODg5KkQCAwbTEh++6++259+tOf1uDgoFatWqV//Md/zHdIyMDvf/97ffOb31RdXZ0++9nP5jscZNGhVyKtXLlSPp/vsPdnzpypj3zkI5IOXM0C56D+ugP11/6owc5E/XUv6q97UIPtjfrrTNRfd6MGuwP1196ov85FDXYv6q87UH/tjxrsTNTf/DHzHQAOPP977969euONN3T88cePev/gc8EPPicc9mJZlr761a/qxz/+sTwej6699lqtWbMm32EhQ//8z/+swcFBFRcX64tf/OJh73V1dUmS7rvvPj399NM6/fTT9dGPfjQfYeIozJw5U36/X4lEQscdd9yYYw6+fuhzw2F/1F9no/46BzXYmai/7kX9dT5qsDNQf52J+utu1GBno/46A/XXuajB7kX9dTbqr3NQg52J+ps/NKIVgEWLFumVV17RH/7wB73//e8f9f4f/vCHkXGwl8HBQX3605/Wk08+qUAgoG984xv68Ic/nO+wcBRisZgk6de//rV+/etfjznmt7/9rX7729/KNE12QGzEMAydeOKJ6urqUn9//5hj3nzzTUnSnDlzpjM05Bj117mov85CDXYm6q97UX+djRrsHNRfZ6L+uhs12Lmov85B/XUuarB7UX+di/rrLNRgZ6L+5g+P5iwAjY2NkqRf/OIXo97bs2ePnnnmGfl8Pn3gAx+Y7tAwBclkcmQHZO7cufrRj37EDoiN3X333dq+ffuY/2tqapIk3Xjjjdq+fbu+8Y1v5DlaZOqDH/ygJOmhhx4a9V46ndbjjz8uSTwT3mGov85E/XUearBzUX/difrrXNRgZ6H+Ohf1172owc5E/XUW6q+zUYPdifrrTNRf56EGOxf1Nz9oRCsAy5cvV0VFhZ588kndc889I68PDg7q+uuvVywW0yWXXKJjjjkmj1EiU//2b/+mJ598UsFgUP/+7/+u973vffkOCcARfOxjH1MoFNKzzz6rW265Rel0WtKBHZDvfe97eumll3T88cdr2bJleY4U2UT9dSbqL2Af1F93ov46FzUYsAfqr3tRg52J+gvYBzXYnai/zkT9BeyD+psfnvTB/08jr5555hmtXr1ag4ODqqur03HHHaff/va3ev3111VbW6u7775bJSUl+Q4TkzQwMKAPfvCDisViWrBggZYuXXrEsR/5yEdGroiAPV199dX65S9/qRtvvFEXX3xxvsPBUXr88cf1d3/3dxocHFRlZeXILbN37Nih0tJS3XHHHSwmHIj66yzUX/ehBtsf9dedqL/OQw12F+qv/VF/3Ysa7CzUX3eh/joDNdidqL/OQv11H2qw/VF/p5+Z7wBwQH19ve6//37dcsstevbZZ/WHP/xBxx13nC655BJdeeWV7IDYzLPPPjvyLOk//vGP+uMf/3jEsZFIhJ0QoACcc845euihh9Te3q6nn35aW7Zs0THHHKNLL71Ura2tOv744/MdInKA+uss1F/Afqi/7kT9dR5qMGAv1F/3ogY7C/UXsB9qsDtRf53l/2/v7mO1Lus/gL8PIHTwoEQ+jJYTlO6b4IAwQh7lKVZxygx7UMZWbSS1XLBWi7Y0My1KWwzwITDHmlBzS9M/aLOV6TwoLCLdEggXYFDthAoinQ544Pv74+zcHDoH+v1+R+4D8nptbPf5Xtf1/V73dTbe1x+fc33lL5x95G/1ORENAAAAAAAAAACAbunV0xMAAAAAAAAAAADg7KYQDQAAAAAAAAAAgG5RiAYAAAAAAAAAAEC3KEQDAAAAAAAAAACgWxSiAQAAAAAAAAAA0C0K0QAAAAAAAAAAAOgWhWgAAAAAAAAAAAB0i0I0AAAAAAAAAAAAukUhGgAAAAAAAAAAAN2iEA3OIY8++mjK5XKmTZvW01Ohg5UrV6ZcLmfevHk9PRUATgP5e2aSvwBvfzL4zCSDAd7e5O+ZSf4CvL3J3zOT/OVcpRANAAAAAAAAAACAblGIBgAAAAAAAAAAQLcoRAMAAAAAAAAAAKBbFKIBAAAAAAAAAADQLQrR4BzV3Nyce+65Jw0NDRk9enQmTJiQBQsWZMOGDV32b2pqyg9+8IM0NDTkqquuytixY3PdddflnnvuycGDBzv1X7lyZcrlcpYtW5Z9+/bltttuy7Rp0zJq1KjMnj07y5Yty5EjR5IkmzZtyoIFCzJ+/PiMHj06c+fOzWOPPXbSuW/fvj1LlizJjBkzUl9fX5n7E088cUK/3bt3p1wup1wup6mpqdN9brnllpTL5UyaNClFUXRqnzt3bsrlcqf7Pvfcc/nyl7+cqVOnpr6+PhMnTsznP//5/PrXv+5yvrNmzUq5XM727dtz5513Zvz48Rk7dmyuv/76HDhw4KTfM0nuvvvulMvl1NfX57e//e0p+wJw5pO/8heAniGDZTAA1Sd/5S8A1Sd/5S/0tD49PQGg+lpaWnLDDTdkx44dGTx4cIYOHZrdu3ensbExGzZsyNKlSzN37txK//bQfeONN3Leeedl2LBhaW1tzY4dO7J9+/b84he/yKpVq1Iulzs96+WXX851112X/fv3Z9iwYendu3f27NmTH//4x9mzZ0/Gjx+f22+/PbW1tRkyZEj27t2brVu3ZsmSJWlpacmNN954wv3WrVuX7373uzl69Gj69++f9773vTlw4EAaGxvT2NiYj370o7nrrrvSu3fvDBkyJFdccUV27tyZxsbGfOITnzjhXs8++2yS5LXXXsuf//znDB8+vNLW1NSUbdu2pW/fvpk6dWrl+h133JG1a9cmSQYOHJjhw4enqakpzzzzTJ555pnMmTMnd999d84777xOa3H77bdny5YtGTZsWP7973+nb9++GThw4El/T8uWLctPfvKT9OvXLytXrsz06dNP8VsF4Ewnf9vIXwCqTQa3kcEAVJP8bSN/Aagm+dtG/kIPK4BzxiOPPFKUSqWiVCoVV199dfHUU09V2l599dXihhtuKEqlUjF58uTi2LFjRVEUxd69e4sxY8YUpVKp+OIXv1js27evMuavf/1rZcyMGTOKgwcPVtpWrFhRedacOXOKXbt2VdqWL19eaRs+fHixdOnS4vDhw0VRFEVzc3OxYMGColQqFTNnzjxh/k8//XRRLpeLkSNHFj/96U+L1tbWStuzzz5bTJo0qSiVSsWyZcsq1++6666iVCoVX/nKV064186dOytzKJVKxZo1a05of/jhh4tSqVQsXLiwcu3BBx8sSqVSMWLEiGLt2rXF0aNHK22/+tWvKut0xx13nHCvmTNnVp6zfv36E9a841rdeOONndZo9OjRRWNjYwHA2Uv+Hid/AagmGXycDAagWuTvcfIXgGqRv8fJX+h5Xs0J56hbbrnlhOrqQYMG5etf/3qS5JVXXsnu3buTJKtWrUpzc3NKpVKWL1+eiy66qDLmsssuy6pVq3LxxRfn73//ex566KEun7V06dIMGTKk8vNNN92U3r17J0nGjRuXb3zjG+nbt2+SpLa2NgsXLkyS/O1vf8vrr79eGfejH/0oRVHka1/7Wj7zmc9U7pEkkyZNytKlS5Mka9asyf79+5O0HYmaJBs2bMixY8cq/dsr4cePH5+k7WjYjn73u98lSWbPnp0kOXz4cO6///4kyaJFizJ//vz06nX8v9A5c+bkzjvvTJL87Gc/y969ezutw/vf//40NDRUfh40aFCX63Xffffl3nvvTf/+/bN69epMmTKly34AnH3kr/wFoGfIYBkMQPXJX/kLQPXJX/kLPU0hGpyDevXqVQnXjjoeq/raa68lSZ566qkkybx58yobhY4uvPDCynGnv/nNbzq1Dxw4MFddddUJ12praysBPG3atE5jLrnkksrnQ4cOJUn27t2bbdu2JUk+9rGPdfm9pk+fnne+851paWnJc889lyQZO3ZsBg0alAMHDuTFF1+s9G1/D/qXvvSl1NTU5Pe//32OHj2aJDly5Eg2btyYXr16ZebMmUmSzZs35+DBg+nTp0/mz5/f5fMbGhpy6aWX5ujRo5V162jcuHFdjuto9erVWb58efr27ZsHHnggEyZM+K9jADg7yF/5C0DPkMEyGIDqk7/yF4Dqk7/yF84EfXp6AkD1XXDBBamtre10/fzzz698Pnz4cA4dOpSmpqYkSX19/UnvN3LkyCTJrl27OrUNHjy4yzHtG5quKsL79Dn+X1NRFEmSl156qXLt5ptvPulcDh8+nCTZuXNnkrYN14wZM/Loo49mw4YNGTVqVFpbW7Np06YMHDgwEydOzLBhw/LSSy/lxRdfzOjRo7Nx48Y0Nzdn7Nixler/9vtdfvnlqaur6/LZNTU1GTFiRJqamrpci4svvvik806SrVu3ZsuWLUnaNkLtGzAA3h7kr/wFoGfIYBkMQPXJX/kLQPXJX/kLZwInosE5qF+/fv+rfv/6178qn08WvB3bmpubK5uGdl1tdjrqeLTpqbzxxhuVz1u2bDnpv+bm5k79P/CBDyRJGhsbkyQvvPBCDh06lAkTJqRXr16ZOHFikmTjxo1Jjv8FQMe/GGjfEAwYMOCU82xfi45r1+4d73jHKce2tLRkwIABueaaa5Ikt956aw4ePHjKMQCcPeSv/AWgZ8hgGQxA9clf+QtA9clf+QtnAieiASfVsTr+VJXZ7e/w7t+/f2pqak7LXPr375+k7ZjX/3yX938zZcqU9OvXL88//3wOHTpUeTd4++Zj8uTJeeihh7Jp06YsXLgwTz/9dJLjm5fk+Fp03Nx0pX3T0HHt/rcuuOCCrFmzJpdffnkaGhryz3/+M9/73vfy/e9///98LwDOXvJX/gLQM2SwDAag+uSv/AWg+uSv/IXTyYlowEnV1dVV3tX9pz/96aT92tuGDBly2uYydOjQJMmBAweyb9++k/bbvHlz/vKXv6SlpaVyrba2NpMmTcqbb76ZTZs2VTYxkydPTpJcffXV6dOnT7Zs2ZKtW7dm7969ufLKKyvPTJIrrrgiSfLyyy+fdEN27NixbN26NUnb8a3/V8OGDUt9fX0GDBiQ2267LUnyy1/+sst3jQPw9iV/5S8APUMGy2AAqk/+yl8Aqk/+yl84nRSiAac0c+bMJMnPf/7zHDlypFP766+/nsceeyxJMm3atNM2jyuvvLIS7GvXru2yzx/+8IfMnz8/DQ0Nef75509omzVrVpLkySefzAsvvJDBgwdXNk11dXUZNWpUmpubs3z58iQnHsmaJOPGjcuFF16Y1tbWrFu3rsvnr1+/Pvv27UtNTU3laNX/r9mzZ+fDH/5wEsezApyL5G8b+QtAtcngNjIYgGqSv23kLwDVJH/byF946ylEA07ppptuyvnnn58dO3Zk8eLFefXVVytte/bsyRe+8IW88sorufTSS/PZz372tM5l8eLFSZLVq1fngQceOGFTtHnz5kr7mDFjKkeutps5c2Zqamry+OOP58iRI5k0adIJ7e0/t1eedzySNWmrqF+4cGGSZMWKFVm3bl2OHTtWaX/iiSfyrW99K0ny6U9/+oRK+v+vW2+9NQMHDqwczwrAuUP+tpG/AFSbDG4jgwGoJvnbRv4CUE3yt438hbeeQjTglC677LKsWLEidXV1efLJJzN9+vR8/OMfz7XXXpsPfvCD+eMf/5h3v/vduf/++zNo0KDTOpePfOQjWbRoUYqiyA9/+MNMnjw5n/zkJzNr1qzMnz8/+/bty9ChQ3Pfffd1GnvJJZekvr4+b775ZpJ02qS0H9Ha3nf06NGd7rFgwYLMmzcvra2t+c53vpPJkyfnU5/6VK655posWrQozc3N+dCHPpRvfvObb8n3veiii7JkyZIkjmcFONfI3+PkLwDVJIOPk8EAVIv8PU7+AlAt8vc4+QtvLYVowH81derUrF+/Pp/73Ofynve8J7t27co//vGPvO9978tXv/rVPP744xk5cmRV5nLzzTfn4YcfzrXXXpu6urps3749+/fvz4gRI7J48eI88sgjede73tXl2I4V7v+5CRkzZkz69++fpO0I15qamk7ja2pq8u1vfzsPPvhgZs+end69e2fbtm1J2qrt77333qxYsSL9+vV7q75urr/++kyZMiWJ41kBzjXyt438BaDaZHAbGQxANcnfNvIXgGqSv23kL7y1aoqiKHp6EgAAAAAAAAAAAJy9nIgGAAAAAAAAAABAtyhEAwAAAAAAAAAAoFsUogEAAAAAAAAAANAtCtEAAAAAAAAAAADoFoVoAAAAAAAAAAAAdItCNAAAAAAAAAAAALpFIRoAAAAAAAAAAADdohANAAAAAAAAAACAblGIBgAAAAAAAAAAQLcoRAMAAAAAAAAAAKBbFKIBAAAAAAAAAADQLQrRAAAAAAAAAAAA6BaFaAAAAAAAAAAAAHSLQjQAAAAAAAAAAAC65X8AM05HNcMTI94AAAAASUVORK5CYII=",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Your answer here\n",
"# Visualise all associations\n",
"sns.relplot(data=school,\n",
" x='homework', y='math',\n",
" col='schid', col_wrap=5,\n",
" kind='scatter')"
]
},
{
"cell_type": "markdown",
"id": "be57fcee-638f-4e52-9243-3701616f2daf",
"metadata": {},
"source": [
"Now, fit a simple GLM predicting math score from homework, which ignores the school id variable. We will use this to compare to a mixed model."
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "ca9ff713-ea36-4b5e-bfbc-988d62887735",
"metadata": {
"editable": true,
"slideshow": {
"slide_type": ""
},
"tags": [
"hide-input"
]
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"OLS Regression Results \n",
"\n",
" Dep. Variable: math R-squared: 0.247 \n",
" \n",
"\n",
" Model: OLS Adj. R-squared: 0.244 \n",
" \n",
"\n",
" No. Observations: 260 F-statistic: 84.64 \n",
" \n",
"\n",
" Covariance Type: nonrobust Prob (F-statistic): 1.25e-17 \n",
" \n",
"
\n",
"\n",
"\n",
" coef std err t P>|t| [0.025 0.975] \n",
" \n",
"\n",
" Intercept 44.0739 0.989 44.580 0.000 42.127 46.021 \n",
" \n",
"\n",
" homework 3.5719 0.388 9.200 0.000 2.807 4.336 \n",
" \n",
"
Notes: [1] Standard Errors assume that the covariance matrix of the errors is correctly specified."
],
"text/latex": [
"\\begin{center}\n",
"\\begin{tabular}{lclc}\n",
"\\toprule\n",
"\\textbf{Dep. Variable:} & math & \\textbf{ R-squared: } & 0.247 \\\\\n",
"\\textbf{Model:} & OLS & \\textbf{ Adj. R-squared: } & 0.244 \\\\\n",
"\\textbf{No. Observations:} & 260 & \\textbf{ F-statistic: } & 84.64 \\\\\n",
"\\textbf{Covariance Type:} & nonrobust & \\textbf{ Prob (F-statistic):} & 1.25e-17 \\\\\n",
"\\bottomrule\n",
"\\end{tabular}\n",
"\\begin{tabular}{lcccccc}\n",
" & \\textbf{coef} & \\textbf{std err} & \\textbf{t} & \\textbf{P$> |$t$|$} & \\textbf{[0.025} & \\textbf{0.975]} \\\\\n",
"\\midrule\n",
"\\textbf{Intercept} & 44.0739 & 0.989 & 44.580 & 0.000 & 42.127 & 46.021 \\\\\n",
"\\textbf{homework} & 3.5719 & 0.388 & 9.200 & 0.000 & 2.807 & 4.336 \\\\\n",
"\\bottomrule\n",
"\\end{tabular}\n",
"%\\caption{OLS Regression Results}\n",
"\\end{center}\n",
"\n",
"Notes: \\newline\n",
" [1] Standard Errors assume that the covariance matrix of the errors is correctly specified."
],
"text/plain": [
"\n",
"\"\"\"\n",
" OLS Regression Results \n",
"==============================================================================\n",
"Dep. Variable: math R-squared: 0.247\n",
"Model: OLS Adj. R-squared: 0.244\n",
"No. Observations: 260 F-statistic: 84.64\n",
"Covariance Type: nonrobust Prob (F-statistic): 1.25e-17\n",
"==============================================================================\n",
" coef std err t P>|t| [0.025 0.975]\n",
"------------------------------------------------------------------------------\n",
"Intercept 44.0739 0.989 44.580 0.000 42.127 46.021\n",
"homework 3.5719 0.388 9.200 0.000 2.807 4.336\n",
"==============================================================================\n",
"\n",
"Notes:\n",
"[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.\n",
"\"\"\""
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Your answer here\n",
"# GLM\n",
"glm = smf.ols('math ~ homework', data=school).fit()\n",
"glm.summary(slim=True)"
]
},
{
"cell_type": "markdown",
"id": "66bde710-dc78-4e12-8a07-cde9889fe58e",
"metadata": {},
"source": [
"Now, lets incorporate the variability from schools by giving a random intercept to schools, using a mixed model."
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "ce7cc270-a65d-4dfa-8e42-0c09a94c5f99",
"metadata": {
"editable": true,
"slideshow": {
"slide_type": ""
},
"tags": [
"hide-input"
]
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
" Model: MixedLM Dependent Variable: math \n",
" \n",
"\n",
" No. Observations: 260 Method: REML \n",
" \n",
"\n",
" No. Groups: 10 Scale: 64.5228 \n",
" \n",
"\n",
" Min. group size: 20 Log-Likelihood: -919.9738 \n",
" \n",
"\n",
" Max. group size: 67 Converged: Yes \n",
" \n",
"\n",
" Mean group size: 26.0 \n",
" \n",
"
\n",
"\n",
"\n",
" Coef. Std.Err. z P>|z| [0.025 0.975] \n",
" \n",
"\n",
" Intercept 44.982 1.803 24.947 0.000 41.448 48.516 \n",
" \n",
"\n",
" homework 2.207 0.381 5.798 0.000 1.461 2.952 \n",
" \n",
"\n",
" schid Var 25.226 1.630 \n",
" \n",
"
\n"
],
"text/latex": [
"\\begin{table}\n",
"\\caption{Mixed Linear Model Regression Results}\n",
"\\label{}\n",
"\\begin{center}\n",
"\\begin{tabular}{llll}\n",
"\\hline\n",
"Model: & MixedLM & Dependent Variable: & math \\\\\n",
"No. Observations: & 260 & Method: & REML \\\\\n",
"No. Groups: & 10 & Scale: & 64.5228 \\\\\n",
"Min. group size: & 20 & Log-Likelihood: & -919.9738 \\\\\n",
"Max. group size: & 67 & Converged: & Yes \\\\\n",
"Mean group size: & 26.0 & & \\\\\n",
"\\hline\n",
"\\end{tabular}\n",
"\\end{center}\n",
"\n",
"\\begin{center}\n",
"\\begin{tabular}{lrrrrrr}\n",
"\\hline\n",
" & Coef. & Std.Err. & z & P$> |$z$|$ & [0.025 & 0.975] \\\\\n",
"\\hline\n",
"Intercept & 44.982 & 1.803 & 24.947 & 0.000 & 41.448 & 48.516 \\\\\n",
"homework & 2.207 & 0.381 & 5.798 & 0.000 & 1.461 & 2.952 \\\\\n",
"schid Var & 25.226 & 1.630 & & & & \\\\\n",
"\\hline\n",
"\\end{tabular}\n",
"\\end{center}\n",
"\\end{table}\n",
"\\bigskip\n"
],
"text/plain": [
"\n",
"\"\"\"\n",
" Mixed Linear Model Regression Results\n",
"=======================================================\n",
"Model: MixedLM Dependent Variable: math \n",
"No. Observations: 260 Method: REML \n",
"No. Groups: 10 Scale: 64.5228 \n",
"Min. group size: 20 Log-Likelihood: -919.9738\n",
"Max. group size: 67 Converged: Yes \n",
"Mean group size: 26.0 \n",
"-------------------------------------------------------\n",
" Coef. Std.Err. z P>|z| [0.025 0.975]\n",
"-------------------------------------------------------\n",
"Intercept 44.982 1.803 24.947 0.000 41.448 48.516\n",
"homework 2.207 0.381 5.798 0.000 1.461 2.952\n",
"schid Var 25.226 1.630 \n",
"=======================================================\n",
"\n",
"\"\"\""
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Your answer here\n",
"# Mixed models\n",
"mix = smf.mixedlm('math ~ homework',\n",
" groups='schid',\n",
" data=school).fit()\n",
"mix.summary()"
]
},
{
"cell_type": "markdown",
"id": "706004f7-cb77-4116-8dc9-bbe08ee4c313",
"metadata": {},
"source": [
"What happened to the association between homework and scores when incorporating the random effect of schools? Bonus points if you can plot the fitted values from the mixed model. "
]
},
{
"cell_type": "markdown",
"id": "0ffae238-b927-456f-b19e-648a1d4b7559",
"metadata": {},
"source": [
"Next, let us add some more complexity. Our existing mixed model incorporates only each schools baseline maths score (a good way to find out which school is over-or-under-performing). It assumes the amount of homework completed has *the same effect on maths exam scores* for every school. That' not realistic. Expand the model so it allows this effect to vary (e.g., a random slope for homework)."
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "4964c9ca-6f12-48cc-b7ff-ff5efff1ba8c",
"metadata": {
"editable": true,
"slideshow": {
"slide_type": ""
},
"tags": [
"hide-input"
]
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
" Model: MixedLM Dependent Variable: math \n",
" \n",
"\n",
" No. Observations: 260 Method: REML \n",
" \n",
"\n",
" No. Groups: 10 Scale: 43.0710 \n",
" \n",
"\n",
" Min. group size: 20 Log-Likelihood: -881.9772 \n",
" \n",
"\n",
" Max. group size: 67 Converged: Yes \n",
" \n",
"\n",
" Mean group size: 26.0 \n",
" \n",
"
\n",
"\n",
"\n",
" Coef. Std.Err. z P>|z| [0.025 0.975] \n",
" \n",
"\n",
" Intercept 44.771 2.744 16.314 0.000 39.392 50.149 \n",
" \n",
"\n",
" homework 2.040 1.555 1.312 0.190 -1.008 5.089 \n",
" \n",
"\n",
" schid Var 69.304 5.437 \n",
" \n",
"\n",
" schid x homework Cov -31.762 2.812 \n",
" \n",
"\n",
" homework Var 22.453 1.787 \n",
" \n",
"
\n"
],
"text/latex": [
"\\begin{table}\n",
"\\caption{Mixed Linear Model Regression Results}\n",
"\\label{}\n",
"\\begin{center}\n",
"\\begin{tabular}{llll}\n",
"\\hline\n",
"Model: & MixedLM & Dependent Variable: & math \\\\\n",
"No. Observations: & 260 & Method: & REML \\\\\n",
"No. Groups: & 10 & Scale: & 43.0710 \\\\\n",
"Min. group size: & 20 & Log-Likelihood: & -881.9772 \\\\\n",
"Max. group size: & 67 & Converged: & Yes \\\\\n",
"Mean group size: & 26.0 & & \\\\\n",
"\\hline\n",
"\\end{tabular}\n",
"\\end{center}\n",
"\n",
"\\begin{center}\n",
"\\begin{tabular}{lrrrrrr}\n",
"\\hline\n",
" & Coef. & Std.Err. & z & P$> |$z$|$ & [0.025 & 0.975] \\\\\n",
"\\hline\n",
"Intercept & 44.771 & 2.744 & 16.314 & 0.000 & 39.392 & 50.149 \\\\\n",
"homework & 2.040 & 1.555 & 1.312 & 0.190 & -1.008 & 5.089 \\\\\n",
"schid Var & 69.304 & 5.437 & & & & \\\\\n",
"schid x homework Cov & -31.762 & 2.812 & & & & \\\\\n",
"homework Var & 22.453 & 1.787 & & & & \\\\\n",
"\\hline\n",
"\\end{tabular}\n",
"\\end{center}\n",
"\\end{table}\n",
"\\bigskip\n"
],
"text/plain": [
"\n",
"\"\"\"\n",
" Mixed Linear Model Regression Results\n",
"================================================================\n",
"Model: MixedLM Dependent Variable: math \n",
"No. Observations: 260 Method: REML \n",
"No. Groups: 10 Scale: 43.0710 \n",
"Min. group size: 20 Log-Likelihood: -881.9772\n",
"Max. group size: 67 Converged: Yes \n",
"Mean group size: 26.0 \n",
"----------------------------------------------------------------\n",
" Coef. Std.Err. z P>|z| [0.025 0.975]\n",
"----------------------------------------------------------------\n",
"Intercept 44.771 2.744 16.314 0.000 39.392 50.149\n",
"homework 2.040 1.555 1.312 0.190 -1.008 5.089\n",
"schid Var 69.304 5.437 \n",
"schid x homework Cov -31.762 2.812 \n",
"homework Var 22.453 1.787 \n",
"================================================================\n",
"\n",
"\"\"\""
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Your answer here\n",
"# mixed model with random slope\n",
"mix2 = smf.mixedlm('math ~ homework',\n",
" groups='schid',\n",
" re_formula='homework',\n",
" data=school).fit()\n",
"\n",
"mix2.summary()"
]
},
{
"cell_type": "markdown",
"id": "2fdc9a97-da6e-4dac-bb75-1f93ebe0cb27",
"metadata": {},
"source": [
"**Now** what happens to the association? More bonus points if you can include the predictions in a plot."
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "867168cd-7707-4f12-87a8-aedf2861e98d",
"metadata": {
"editable": true,
"slideshow": {
"slide_type": ""
},
"tags": [
"hide-input"
]
},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAACtEAAAPGCAYAAACfrifVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeVxVdf7H8ffdgIsIuIHiiqaJqKm5l6GilJiFWFmm1bTaNNMyM78Wa5pm5ldN86tppsWxtN0ElFwyNc1SM9fMzFTUFHcUN+SqF7zc5fcH451IQEDgci+v5+PR4+H5nu8953P5Qt9zvudzvl+Dx+PxCAAAAAAAAAAAAAAAAAAAAKhHjL4OAAAAAAAAAAAAAAAAAAAAAKhtJNECAAAAAAAAAAAAAAAAAACg3iGJFgAAAAAAAAAAAAAAAAAAAPUOSbQAAAAAAAAAAAAAAAAAAACod0iiBQAAAAAAAAAAAAAAAAAAQL1DEi0AAAAAAAAAAAAAAAAAAADqHZJoAQAAAAAAAAAAAAAAAAAAUO+QRAsAAAAAAAAAAAAAAAAAAIB6hyRaAAAAAAAAAAAAAAAAAAAA1DtmXwcAoG6ZPXu2nnrqKUVHR+vrr7+u8c+9/vrreuONN9SrVy+lpaVVJeRq8eSTT2rOnDkVrr9jx46L1nnooYe0dOlS/eY3v9Fvf/vbEvuGDh2qQ4cOVehcffv21UcffVSibPfu3Xrvvfe0du1a5ebmymw2q127dho+fLjuuOMOhYWFVfi7AAB8h363Yn7Z7xYUFOi9997TokWLtH//fhkMBsXGxio5OVl33nmngoKCSj3OkSNH9O6772rlypXKycmRJLVq1UqDBw/W3XffrSZNmpR5/qlTp2rdunU6deqUWrRoof79++vuu+9Wu3btKvw9AAC+Rb9bMb/sd0+ePKmpU6fqq6++Uk5Ojho1aqT4+Hjdeeed6t+/f5nH2bt3r95++22tXr1ax48fV0REhK644grdfvvtuuqqq8r8XF5env7973/ryy+/VG5ursLDw9WrVy/de++96tGjR4W/BwCg5tXXvvW8wsJCTZ8+XYsXL9bu3bvlcDjUrFkz9enTR3fffbc6d+5c4WPVtbHkgwcPKjExsdxzde7cWfPmzatQXACAS0OfW7U+d8KECVq/fn25x547d67i4uLKreN0OjV27Fht2bJFL774olJTUy+oU1RUpJ49e6qoqKjM4zRs2FAbNmy4oNztduuTTz7R3Llz9dNPP8lut6tly5YaOnSoJk6cqIiIiHLjAwAAl44kWgCQ1K5dO/Xq1avcOj/++KOKiorUpk2bix5v7ty5Wrp0aZn7u3btqujo6DL3nzt3Tlu3bpUktW3btsS+RYsW6fHHH5fD4ZDFYlG7du1kt9uVlZWlbdu2ad68efrggw/UvHnzi8YJAIAvXEq/a7PZNGHCBG3fvl0Gg8G7/3w/uHjxYr3//vsXPATcsGGDHnzwQdlsNplMJrVp00Zut1t79uzRrl27NG/ePE2bNu2CAdd58+bp6aefVlFRkYKCgtSxY0edPHlSGRkZmjNnjl566SUlJydXw08FAICacSn97vbt23Xvvffq2LFjMhgMuuyyy+TxePTVV1/pq6++0l133aUnn3xSBoOhxOdWrlyp3/zmNyosLJTValWHDh108uRJffnll/ryyy91991364knnrggjuPHj+u2227T/v37ZbVa1alTJ+Xm5uqLL77QV199pb/85S+66aabLv2HAgDAJTp+/LjuvPNO7dq1S5IUHR2tiIgI7du3T/PmzdPChQv1/PPP68Ybb7zoseriWPL27dslSZGRkWrfvn2p5+WlUgBAbbiUPvf8S6JXXHGFTCZTqccPDQ29aAxTpkzRli1byq2ze/duFRUVyWq1lpmU26BBgwvK7Ha7HnzwQa1du1ZScf/aqFEj7d+/X++++64WL16sGTNm8NwXAIAaRhItgGoxfPhwXXHFFbJYLL4OpUomTpyoiRMnlrl/zpw52rhxo0JDQzVlypRyj5Wbm6vnn3++3DqvvfZaufufeuopbd26VZ06ddLTTz/tLT9w4IB30DMlJUXPPPOMGjZsKKk4eej3v/+9du/erUcffVTp6enlngMA4L/qc7/7t7/9Tdu3b1dUVJQmT56sbt26SZI2btyohx56SD/++KP+9re/6X//93+9n7HZbPrtb38rm82mQYMG6YUXXlBUVJSk//at5z+/cOFCBQcHS5K2bt3qTaAdMmSIXnjhBTVu3FjSf5Nrf/e736l58+YXTU4CAPiv+trvnn+Qd+zYMbVr106vv/66OnXqJKm4j/z1r3+t999/X02aNNH999/v/dzJkyf1+9//XoWFhRo5cqT+/Oc/e+9b58+fryeeeELvvvuuevTooWuvvbZELI899pj279+vq666Sq+++qoiIiLkdrs1bdo0vfLKK3ruuefUs2dPdejQoTp/RACAWubvfaskPf7449q1a5fatm2rl19+Wd27d5cknT17Vi+99JIyMjL09NNPKy4uztt/lqaujiWfT6K97rrr9Oc//7nc8wMA6q763Ofm5OQoPz9fVqtV6enpMhqNVTp/VlbWRZ8NS//tO3v37q1p06ZV+PjPPfec1q5dq6ioKL355pve77djxw49/PDD2rt3r5599lm9/fbbVYofAABUTNWuFADgFxo2bKgOHTpUaJZWf7Nnzx795S9/kSQ9/fTTF31YN2nSJNlsNlmt1iqdb/78+Zo9e7aCg4P16quvljjOhx9+KIfDobi4OL3wwgveQU9JiouL0+uvvy6TyaTvv/++1OVAAACBob72uw6HQwsWLJBUPHh6PoFWknr16qU//OEPkor7UofD4d03e/ZsnTx5UlFRUfrnP//pTaCVpNatW+vNN99URESEDh48qM8//9y779///reKiorUqVMnvfbaa94EWkm68cYb9atf/Uoej8cbLwAgMNXXfjczM1M5OTkKCQnRtGnTSjyMjI+P976wMnnyZB09erTE5/Lz89WyZUv97W9/K3HfOmrUKN18882SdEGyzrp167R+/XqFhobq5Zdf9i5XaTQadf/992vUqFEqKirSv//972r+KQAAapu/961ZWVlatWqVjEajXnnlFW+yi1Q8w9yf//xn9e7dW0VFRfrggw/KPVZdHUs+P3NfeQnAAIC6rz73ueeTWi+77LIqJ9A6HA49/vjjcrlcCgoKKrfu+fNVpu/cvHmz5s2bJ5PJpGnTppX4fpdffrn3RZavv/5aubm5VfgGAACgokiiBYCLeOaZZ2S323XVVVdddNnItLQ0ffPNNxo2bFiJxJ6KOnnypPcB5q9//WtddtllJfavW7dOkjRixIhSlx3p0KGDd3mtiy0rAgBAXVRev3vq1CkVFhZKkjp37nzBZ8/3vYWFhTp58qS3/Hz/OWTIEIWFhV3wucaNG6tnz56SipezliSXy6VVq1ZJku64445SB0nvvPNOScWDuecHSQEA8Cfl9bsrVqyQJCUlJal169YXfHbQoEFq3769CgoKSryE0rJlS11//fUaN25cqf3n5ZdfLql4VqCfmzNnjiQpMTGxxIsr5912222SpC+//NJ7PQAAgC+cv8ds06ZNqWPABoNBQ4cOlfTfe8zS1OWx5KokAgEAUN0upc8935d17Nixyud/7bXXtHPnTk2YMEHNmjUrt25V+s7z98EpKSnee+Wf69evnx599FE988wzVU4EBgAAFWP2dQAAKic3N1dTp07V+vXrdfDgQXk8HrVo0UIDBw7UXXfdpVatWpX6ua+++kqzZs3S1q1bdfLkSUVGRqp3796699571bVr11I/Y7fb9e6772rhwoU6ePCgrFarunbtqrvvvltXXXVVibqzZ8/WU089pejoaH399dcl9rndbs2ZM0ezZs3Srl27JBXPFvfb3/62Sj+D0m4iytKyZUt99dVXVTqPJC1cuFAbNmyQxWLRM888U27dAwcO6O9//7siIyP15z//WY899lilz/evf/1LNptNbdu21d13333B/qeffloHDx7UFVdcUeYxPB6PpOLkHwDApaHfrVv9bpMmTRQcHKxz585p27ZtFwyAnp8pJzg4WE2aNPGWP/jgg7r22msVGxtb5rnP959ut1uSlJeXJ7vdLklltlnTpk0VHh4um82mH374odTEXgBAxdHv1q1+93ySa3x8fJnHiI2NVXZ2tn744Qdv2ciRIzVy5MgyP3M+Sadt27Ylyr///ntJ0pVXXlnq57p37y6z2Sy73a4tW7aod+/eZZ4DAFCMvrVm+tahQ4cqKiqq3KWxf3mP+Ut1eSz57NmzOnDggKRLSzwCgPqEPrfu9bnnk1orE9fPbdq0Se+++67atWun3/3ud1q6dGm59auSRLt69WpJxS+vlsZgMOjBBx+s8PEAAEDVkUQL+JH9+/fr1ltv1YkTJxQaGuq94dq7d68++ugjzZkzRx999JG6dOni/YzL5dJTTz2lefPmSZKaNWumTp066cCBA1q0aJG++OILTZ48WQkJCSXOVVhYqLFjx2rnzp1q0aKFYmNjtXfvXn3zzTdatWqVXnzxRY0ePfqiMTscDj322GPeG4s2bdooLCxMq1ev1urVq6v0hn2vXr0qXPdibwWWx+Fw6P/+7/8kSbfccov3rfzSuN1uPfXUU7Lb7Xr++efVtGnTSp9v586dmjVrliTpd7/7Xakz9vTr10/9+vUr8xg//fST90b3lzMPAAAqh363WF3qd00mk8aOHasPP/xQr7zyii677DJvYs+2bdu8nx8/fnyJgdXu3buXWArrl06ePKn169dL+m//aTAYvPvN5rJvm5xOpyTp0KFDFfqeAIDS0e8Wq0v97vm+sLyHlZXpB202mz788EPNnj1bZrNZ9913n3ef2+3WwYMHJanMZUYtFouio6N16NAh7dmzhyRaALgI+tZiNdG3tmnT5qLLYp+fpb20Mdq6Ppa8Y8cOeTweRUVFKS8vT++99562bdsml8uldu3aaeTIkWW+9AIA9RF9brG61ueen3ChVatWysjI0Jo1a3Ty5Ek1bdpUAwYM0I033lhq/ykV/5yfeOIJeTwevfjiiwoJCSk3htzcXOXl5clkMqlBgwb697//rR9++EGFhYVq1aqVhg8ffkFbFhQUaP/+/d7Yz5w5o08//VRr166VzWZTTEyMRowYoUGDBpV7bgAAUD1IogX8yKuvvqoTJ07o2muv1YsvvqgGDRpIko4fP67f/OY3+v777/XKK6/onXfe8X7mnXfe0bx582S1WvX8888rOTlZBoNB586d04svvqi0tDQ9+uijWr58uSIiIryfy8/Pl8Fg0Ntvv+29qD958qR+/etf6/vvv9fLL7+slJSUEgkmpXnnnXe0dOlSNWzYUK+99poGDhwoqfhm4g9/+IM3YaUy0tLSKv2Zqpg3b55ycnJkNpt1zz33lFv3gw8+0Lfffqtrr71WycnJVTrf1KlT5XK5FBsbW+Ybh+VxuVz685//LEmKjo7WgAEDqhQHAKAY/W6xutbvPvHEE3K5XMrIyNBNN92kNm3ayGAwaN++fQoKCtLEiRP1yCOPVOrczz//vAoKCmS1WnXttddKkho1aqSwsDCdOXNGWVlZpc6+c/DgQe9stfn5+ZU6JwCgJPrdYnWp323durV2796trKysUvd7PB5v4k15/eDixYv1+uuva9++fXI4HGrRooWee+459enTx1snPz/fm5DbuHHjMo8VGRmpQ4cOKS8v76LfEQDqO/rWYrXVt/7czJkzvUtKp6SkXLC/ro8ln59Jz2azaeTIkSVmqV21apU+/vhjjRkzRn/+85/LfdkGAOoL+txidanPtdvt3gTVxx9/XGfPni3xuQULFmjatGmaPHmyOnTocMFxX375Ze3du1d33313hZKDz/edBoNBo0aN0rlz50rsnzVrlgYPHqxXXnlFYWFhkqTDhw97Z889cuSIJkyY4F0R5rxPPvlEycnJeumll8pM+AUAANXD6OsAAFTc+QvwG264wXsDJhUvJfz0009r0KBBJd6yczgcevvttyUV3yCMHDnSe9MUHBysZ599VrGxsbLb7Vq0aNEF53vmmWdKvBXXuHFjPf7445KKb/z27t1bbrxFRUXeG8Knn37aewMmFQ/MvfHGG4qMjKzET6B2ffjhh5KKl6Js2bJlmfV2796tV199VY0bN9Zzzz1XpXPl5uZ62+Dee++V0Vi5/z17PB796U9/0rfffiupOMGImykAuDT0u7Wrov2uJLVv315RUVFyu93au3ev9uzZI7fbrQYNGigsLKzEA76LmTx5sj777DNJ0q9//Ws1adJEkmQ0GjV48GBJ0rRp0+RwOC747JQpU7z/LioqqvA5AQAXot+tXRXpd4cOHSpJ+uyzz7Rv374L9s+fP987A215/eDmzZv1008/efvS/Px8ffXVVzpz5oy3TmFhofff5d3LBgcHX1AfAFA6+lbfWL16tf76179KkgYNGuS9rzzPH8aSz//unDt3TjfffLMWLFigH3/8UcuWLdOjjz4qi8WiTz75RM8//3yV4geAQEOf6xvl9bk7d+70Jqi2adNGU6dO1caNG/Xdd99p8uTJateunfbu3at77rnngpc0161bp+nTp6t9+/Z69NFHKxTL+VlvnU6nhgwZok8++USbN2/WqlWr9Oyzz6pBgwZavny5HnvsMe9nfp7Y+9vf/lYGg0FvvvmmNm3apLVr1+rZZ59VSEiIFi5cSJ8LAEAtYCZawI+0bdtW2dnZevnllyVJV199tXf5iG7dumnatGkl6m/YsEGnT5+WxWJRamrqBcczGo16++23ZbFY1Lx58wv2DRs27ILPXH755d5/nzx5UrGxsWXGe/78wcHBGjly5AX7IyIilJycrBkzZpTzrX1j9erV2rlzpySVOxuey+XSk08+qXPnzunvf/97uTPmlGfGjBkqKipSs2bNdMMNN1Tqsy6XS88++6wyMzMlSRMmTCj15w0AqBz63dpT0X7X6XTqoYce0vLly9W6dWtNnjxZAwYMkNvt1tdff62XXnpJL7/8sr777ju9+eabMplM5Z73jTfe0Ouvvy6pOFHo58tKS8VJtV9++aV27Nihu+66S0888YTi4uJ04sQJffjhh5o1a5YaNWqkvLw8mc3cWgHApaDfrT0V7XdTUlL04YcfateuXbrjjjv0zDPP6KqrrpLT6dTnn3+uF198sUL94IQJE/TQQw/pzJkzWrVqlf7+978rIyNDW7duVUZGhsxmc4nkn/JmTPJ4PJJU6WQhAKiP6Ftr34oVK/Twww/L4XCoVatW+vvf/15iv7+MJffu3Vsej0dxcXEaN26ctzwmJkYPPvigWrZsqf/5n/9Renq6br/99lJXbgGA+oQ+t/ZdrM9t2LChfvWrX+n06dN65plnZLVavfsSExPVs2dP3XDDDTp8+LCmTZum//mf/5EknTlzRk899ZSMRqNefPFF74ucF3P55ZfrtttuU9OmTfWb3/zGWx4cHKzbb79dl19+ucaPH6+vv/5aK1asUEJCQonZah0OhzIzM70vuVqtVt1+++0KCQnRpEmTNHPmTN15551q3759lX9mAACgfDzpBfzII488onXr1mnPnj166KGHFBQUpJ49e+qqq65SQkKCOnfuXKL++ZliYmNjvTdrv9SmTZtSy8PDw0vcUJz38zcof7kUxS/t2bNHUvHNY1kzycTFxZV7jNLcdtttFa7brFkzvfbaa5U+x8KFCyUVx/fzG89feuutt7R582aNGDFC1113XaXPc975N0mTk5MrNYOs3W7X73//e3311VeSpNTUVE2aNKnKcQAA/ot+t1hd6nfnzJmj5cuXKzQ0VO+9955at27t3ZecnKxu3bopJSVFy5Yt07x580odhJaKk3H/8pe/KCMjQ1LxwPY///nPC5J2OnTooDfeeEOPPPKIvvvuO91yyy3efSaTSQ8//LB++uknLVq0yLsMFwCgauh3i9Wlfjc4OFhTpkzR/fffr+zs7BIPAqXiB499+vTR3/72t3L7wfMPfUNDQzV69GhdccUVSklJ0ZYtW/Tpp58qNTW1xM++tNnff7mvog8yAaA+o28tVht9qyRlZmbqueeeU1FRkVq2bKn333//giRZfxlLvuGGG8pNzr3hhhv05ptvau/evfryyy9JogVQ79HnFqtLfW6HDh305JNPlnmMxo0ba/z48Xr11Ve1dOlSbxLtiy++qEOHDunee+9Vjx49KhxTQkJCidmBf6l3794aOHCgVq1apaVLlyohIaFE26emppa6SkxqaqrefPNNHTp0SMuWLSOJFgCAGkQSLeBH4uLi9Omnn+qtt97SF198oVOnTmndunVat26d/vGPf6hTp07605/+pN69e0uSTp06Jan4QVVlVccDKZvNdtHzh4eHV/q4GzdurHDdiy0HXRq32+0dSExOTi6z3vbt2zV58mQ1adJEzz77bKXPc97OnTu9N8zlne+XcnNzNXHiRG3btk2SdNddd+nJJ58sd9YeAEDF0e8Wqyv9riR9/vnnkqQbb7yxRALtea1bt1Zqaqo+/PBDffbZZ6Um0Z45c0YPP/ywVq1a5T3nSy+9VOaA8dVXX63FixcrPT1dP/74o5xOpy677DKNGTNGnTp10oQJEyQVL3UGAKg6+t1idanflYr71nnz5mnOnDlatWqVbDabWrRooeTkZA0aNMg7o3tl+sH27dtr+PDh+uyzz7R+/XqlpqYqNDRUQUFBcjgcFyyl+XPn9zVp0qTC5wOA+oq+tVhN960ej0f/+Mc/vMtyd+rUSdOmTbugbwy0seS4uDjt3btXBw8erNLnASCQ0OcWqyt9bkWdTxQ+35etWLFCmZmZ6tChgx555JEqHfNi51u1apX3fD//GZeVtGwwGHTZZZfp0KFDOnDgQLXHBAAA/oskWsDPtG7dWv/7v/+rv/zlL9qyZYvWr1+vNWvWaN26ddq5c6fuvfdeLVq0SC1atPC+iXj27FmfxBoZGSmpOFmlLIWFhZU+7o4dO6oaUoV8//33OnHihCRpxIgRZdb74osvVFRUpBMnTmjAgAFl1nvjjTf0xhtvqGXLlt6HlT/35ZdfSipeDuuKK66oUIw7d+7UfffdpyNHjshoNOqpp57SHXfcUaHPAgAqjn637vS7kpSTkyNJ5b5xf9lll0lSqQ/yjhw5ovvuu6/EEtb/8z//c9GHhr9chus8t9ut7du3SyoetAUAXBr63brV754XFBSksWPHauzYsRfs27p1q6SS/eCpU6d08OBBxcTElLlM9fkHpseOHZNUvCRpbGysduzYUWYyTlFRkY4ePSpJateuXYViB4D6jr61ZvtWh8Ohxx9/3Dsz7IABA/T666+rYcOGF9T1t7HkoqIiGY1GmUymUve73W5JktnMY0YAkOhzpbrT557n8XhUVFRU5uQJHo9H0n/7svPH3r17t7p161bmcZ966ik99dRT6tu3rz766CNvucvlksfjKbNv/GXf2bJlS4WEhKiwsLDcFVnO98WVmX0eAABUntHXAQCoGI/Ho4MHD3pnTTMajerevbvuvfdevfPOO5o/f77CwsJUUFCgJUuWSCpeBkQqXhakrKU70tLSdNddd+mdd96p9ph/fn673V5qnV27dlX7eS/Vd999J6n4hre0We7Oa9GihXr16lXmf+eXszxfr2vXruWeb8CAARV683/Xrl264447dOTIEYWEhOj1118ngRYAqhn9bu2paL8rydu3nk+4Kc35xKBfLit99OhRTZgwQTt37pTJZNJzzz2nxx9/vNy+d8WKFZo2bZp+/PHHUvevX79eNptNVqtVPXv2LDd2AEDZ6HdrT2X63aysLH3wwQfemeB/6ezZs1q7dq0klUgGuummmzRmzBjNnj27zGMfOnRIUskZbM8nAm3atKnUz2zevFlOp1PBwcHq0qVLubEDQH1H31rznE6nHnnkEW/CzejRozV16tQyk3n8ZSw5Pz9fffv2VdeuXb0Ju6XJysqS9N8XWQGgvqLPrXmV7XMl6Q9/+IO6du2qhx9+uMw6518K7dChg6TilzXL66vPJ7Ger/fzl0mHDh2q+Pj4Ekm1v3R+NvjzfafJZPL29z/88EOZn9uzZ48kqU2bNmXWAQAAl44kWsBPnDp1Stdee63uvvvuUhM5YmNjFRMTI+m/b7JdeeWVCg0NlcPh0Pz58y/4jNvtVmZmptasWVPmTdKl6N27t5o0aaKioiLNmjXrgv0FBQX67LPPqv28l2rLli2SpB49epRb76abblJaWlqZ/51/qDdmzBilpaXptddeK/d8FUm+yc/P13333ae8vDw1bNhQ7733noYNG1aJbwcAqAj63dpT0X5Xkvr37y9Jmj9/fqk/w5//7M/XPV8+ceJE7d+/XxaLRf/617902223XfR8ixcv1v/93//p/fffv2Cfx+PRlClTJEk333yzQkJCLno8AEDp6HdrT2X63R07duiFF17QSy+9JKfTecH+9957TwUFBYqLi1OfPn285VdddZUkadasWSoqKrrgcwcPHtTSpUslFT9oPO/8zLiLFy/2Lm/6c2lpaZKKl66m3wWA8tG31rwXX3zRO1PsPffco7/97W+yWCxl1veXseSIiAg1bdpUksp8Iebzzz/33l8PHz78onEAQCCjz615le1zJenyyy+X0+nU2rVrdfjw4Qv222w2ZWRkSJJGjhwpSZo4cWK5fXWzZs0kSQ888IDS0tL0xz/+0Xu8Dh06yOPx6NNPPy31/nnz5s1at26dpOJ72vNGjRolqbhvLS3OFStWaM+ePTIajfS5AADUMJJoAT/RqFEjDRo0SJI0adIk7d6927vP7Xbr448/1s6dO2UwGLz1wsLCdNddd0kqeYMhFS/D8fzzz2vLli0KCwsrdVnGS2UymfTII49Ikl555RUtWLDAuy8vL0+PPvpoqTcEvnb+zcP4+PgaP1dOTo7y8vIkqUIz6bz00kvKycmR0WjUq6++ql69etV0iABQL9Hv1p7K9Lt33HGHIiIidPjwYf36179WTk6Od9+JEyf08MMPKzs7WxEREd62kKSpU6d6z/OnP/2pwgOOqampkqQFCxZo7ty53vIzZ87o6aef1po1axQZGamJEydW6HgAgNLR79aeyvS7w4YNU0REhHJycvT88897l5d0uVz6+OOPNXnyZBkMBv3hD38oMRPevffeq5CQEO3du1e///3vdfLkSe++bdu26Z577lFhYaH69OmjxMRE774BAwboyiuv1OnTp/XQQw/p+PHjkop/B6ZOnar58+fLYrHovvvuq5afBQAEMvrWmrVhwwZNnz5dUnHyy+OPP14r562tseT7779fkrRs2TK98sorJZaY/vzzz/XUU09JKu7zfz6rPADUR/S5Nauqfe7NN9+sRo0aqaCgQL/97W+1b98+774DBw7o/vvvV25urtq1a6dx48Zdcpz33XefDAaDtm3bpmeeeUZnzpzx7lu3bp1+/etfy+Px6IYbblC3bt28+1JTU9WxY0fZ7Xbdd999JWYA3rJli5599llJ0i233EKfCwBADTP7OgAAFfeXv/xFY8eO1c6dO3X99derVatWatiwYYnBs9/97nclllB66KGHtGfPHi1atEgPPvigWrRoocaNG2vv3r06e/asQkJC9I9//ENRUVE1EvP5eKdPn67f/e53evnll9W4cWP99NNPcjgcGjZsmHcGmrri6NGjkuR9M7Qm5ebmev99sfMdPXpU8+bNkySFhIRo8uTJmjx5cpn1x4wZo5tuuql6AgWAeoh+t3ZUpt9t1qyZJk+erIceekhr1qxRYmKiOnToILPZrF27dqmoqEiRkZF68803vT9jh8OhDz74QJJkNps1e/bscpeXTkhI8CbF9u7dW3fffbfeffddPfHEE/rnP/+pxo0bKzs7WwUFBYqMjNR7772nJk2aXOqPAQDqPfrd2lGZfjcsLEwvvPCCHnnkEc2YMUMLFixQq1atdPjwYZ08eVJGo1HPP/+8rr766hKfa926tf75z3/qscce0+LFi7Vs2TLFxsbq3Llz2rt3r6TimXBfe+21Esm3BoNBL730km6//XZt2LBBQ4YMUceOHXX06FEdO3ZMBoNBL7zwgnepTQBA+ehba87UqVO9/969e3e5K500a9aszFllK6u2xpJTUlK0Y8cOvfvuu3r77bf18ccfq127djp+/Lg3hptvvrncJbIBoD6hz605Ve1zIyMj9cYbb+jBBx/Ujz/+qBEjRqht27becWS3263WrVtr2rRpslqtlxxn3759NWnSJP3tb3/TnDlztGjRIsXGxur06dM6ePCgpOJx5//93/8t8bmgoCD9+9//1j333KOffvpJ119/vdq3by+DweBNqB0wYICeeOKJS44RAACUjyRawI9ERUUpMzNT77zzjlauXKkDBw7o8OHDatKkiUaOHKnx48df8Da52WzWq6++qqSkJGVmZmrr1q3asWOHmjRpomuvvVb333+/YmNjazTuP/7xjxowYIA++ugjbd++XadOnVK3bt3061//WsePH68TN2HnnTlzxvtmfYsWLWr8fOdn5AkJCVGjRo3Krfv99997lwCx2+3auHFjufUHDhxYPUECQD1Fv1vzqtLv9u7dW/Pnz9d7772nFStW6MCBA5KkNm3aKCEhQb/61a9KDC7v3LlT+fn5kiSn03nR/rNt27Yltp944gldccUV+vjjj7Vt2zYdP35czZs31+DBg3XfffcxAwAAVBP63ZpXlX532LBhysjI0Ntvv60NGzZo+/btatSokUaMGKG7775b3bt3L/VzQ4YM0bx58/TOO+/om2++UXZ2tkJCQnTllVfqhhtu0JgxY0pdfrN169aaO3eupkyZoq+++ko7d+6U1WrVoEGDdO+996p///5V/wEAQD1D31pz1q9f7/33tm3byq3bsmXLajtvbY4lP/HEExo0aJCmT5+uTZs2aceOHYqIiNCQIUN06623avDgwVX/IgAQYOhza86l9Lm9e/fWZ599pnfffVfLly/XwYMHZTab1blzZ1177bW68847qyWB9rw77rhDPXr00AcffKBvv/1Wu3btUoMGDdS/f3+lpqbqhhtuKPEi6XmtW7fWvHnz9MEHH+jzzz/Xvn37ZDKZdMUVVyglJUW33HKLzGbSegAAqGkGj8fj8XUQAAAAAAAAAAAAAAAAAAAAQG0y+joAAAAAAAAAAAAAAAAAAAAAoLaRRAsAAAAAAAAAAAAAAAAAAIB6hyRaAAAAAAAAAAAAAAAAAAAA1Dsk0QIAAAAAAAAAAAAAAAAAAKDeIYkWAAAAAAAAAAAAAAAAAAAA9Q5JtAAAAAAAAAAAAAAAAAAAAKh3zL4OwN/t2bNHhYWFCgkJUWxsrK/DAQAgoNHvAgBQe+h3AQCoPfS7AADUDvpcAAAAAL9EEu0lKiwslN1ur7bjuVwubdq0SZLUo0cPmUymajs2fIM2DTy0aeChTf0H/S4uhjYNPLRp4KFN/Ud19ru0e+ChTQMT7Rp4aFP/Qb+L8tCmgYc2DTy0qf9gjBkXQ5sGHto08NCmAIDqZvR1AAAAAAAAAAAAAAAAAAAAAEBtI4kWAAAAAAAAAAAAAAAAAAAA9Q5JtAAAAAAAAAAAAAAAAAAAAKh3SKIFAAAAAAAAAAAAAAAAAABAvUMSLQAAAAAAAAAAAAAAAAAAAOodkmgBAAAAAAAAAAAAAAAAAABQ75BECwAAAAAAAAAAAAAAAAAAgHqHJFoAAAAAAAAAAAAAAAAAAADUOyTRAgAAAAAAAAAAAAAAAAAAoN4hiRYAAAAAAAAAAAAAAAAAAAD1Dkm0AAAAAAAAAAAAAAAAAAAAqHdIogUAAAAAAAAAAAAAAAAAAEC9QxItAAAAAAAAAAAAAAAAAAAA6h2SaAEAAAAAAAAAAAAAAAAAAFDvkEQLAAAAAAAAAAAAAAAAAACAeockWgAAAAAAAAAAAAAAAAAAANQ7JNECAAAAAAAAAAAAAAAAAACg3iGJFgAAAAAAAAAAAAAAAAAAAPUOSbQAAAAAAAAAAAAAAAAAAACod8y+DuBihg4dqkOHDl20Xt++ffXRRx95t1evXq2pU6dq+/btKiwsVPv27XXrrbfqpptuksFgqMmQAQAAAAAAAAAAAAAAAAAAUMfV+STaYcOG6eTJk6Xu83g8+vzzz+V0OhUfH+8tT0tL03PPPSeLxaJ+/frJYrFo7dq1euaZZ7Rx40a9+OKLtRU+AAAAAABAQLJarTKZTL4OAwAAAAAAAAAAoMrqfBLtpEmTytz35ptvyul0qk+fPvrDH/4gSdqzZ4/++te/KiwsTB999JG6dOkiScrJydGdd96p2bNnKyEhQdddd12txA8AAAAAABBInC63HC6PIlq0Vb7doWNnHAq3WhRkMspsMvo6vGrlcLpU5PLIVlCkPHuRGoVaFG61yGIyKMhMAjEAAAAAAAAAAP6uzifRlmXdunV64403FB4erldeeUVmc/FXmTZtmlwul+655x5vAq0kxcTE6Nlnn9W9996radOmkUQLAAAAAABQSXaHU0uzcvXWimxtzbF5y+NjwvVAQnsNi4tWaJDfDjeVcPacU19sy9XUlRd+1/sGtdfwLtFqEBwY3xUAAAAAAAAAgPrKL6cHcTgcevbZZ+V2u/X4448rOjrau2/ZsmWSpKSkpAs+N3DgQDVs2FA//vijcnNzay1eAAAAAAAAf2d3OPXCwiw9nLapRFKpJG3NsenhtE16YeF22R1OH0VYfeznnHp+QZYezSj9uz6asUkvLMzS2XP+/10BAAAAAAAAAKjP/DKJ9v3339fevXvVrVs33XTTTd7y48eP68SJE7JYLGrfvv0FnzOZTN7yHTt21Fq8AAAAAAAA/szpcmtpVq6mr91fbr3pa/fpy6yjcrrctRRZ9XM4XVqyLVcz1pf/XT9et19Lt+XK4XTVUmQAAAAAAAAAAKC6+d2ac2fOnNHbb78tSXr44YdlMBi8+44ePSpJatq0qYzG0vODo6KiStStLh6PRy7XpT80+fkxquN48D3aNPDQpoGHNr10JpOpVs9Hv4uy0KaBhzYNPLTppfPHfpd2938Ol0dTlmdXqO6UFbuVGBclgzw1HFXNKHJ59PbXFfuub6/M1vAu0TIZAuP3mr/VwEObXjr6XdQFtGngoU0DD2166fyxz5Vo+0BEmwYe2jTw0KaXrrb7XQCo6/wuiTY9PV2nT59WfHy8rrnmmhL77Ha7JCkkJKTMzwcHB5eoW10KCgq0adOmaj3mjz/+WK3Hg+/RpoGHNg08tGnVXHnllbV6PvpdVARtGnho08BDm1aNv/e7tLv/sVqtimjRVtsO2ypUf2uOTXlnzyn/8D4VFBTUcHTVKzIyUqFNYir1XfMLimQ/kaNTp07VbHC1jL/VwEObVg39Luoa2jTw0KaBhzatGn/vcyXaPhDRpoGHNg08tGnV1Ha/CwB1XenTtdZRLpdLH374oSTp/vvvv2D/+dlnfz47bVk8Hv+cDQUAAAAAAKA2mUwm5dsdlfqMzV7klzNaWCwW5VXyu54qKJLFYqmhiAAAAAAAAAAAQE3yq5lo169fr9zcXEVERGjo0KEX7G/QoIEkqbCwsMxjnDt3TpIUGhparbFZrVZdfvnll3wcl8vlfVOmW7dufvnACSXRpoGHNg08tKn/od9FWWjTwEObBh7a1P9UR79Lu/u/Y2cql1jaKCxYzZpfVkPR1Kyjpyv3XSNDLYoKa6mWLVvWUES1h7/VwEOb+h/6XZSGNg08tGngoU39D2PMKAttGnho08BDmwIAqptfJdEuXrxYknTttdcqKCjogv3R0dGSpOPHj8vj8ZQ6I+3Ro0clSVFRUdUam8FgqPaO2WQy0dkHGNo08NCmgYc29Q/0u6gI2jTw0KaBhzb1D9Xd79Lu/incalF8TLi25tguWjc+JlzhVovftnOlv2uI/37Xn/N4PFqxYoXWrFmjmJgY9ejRIyC+F/6L///6B/pdXAxtGnho08BDm/oHxphREbRp4KFNAw9tCgCoDkZfB1AZK1askCRdd911pe6PjIxUdHS0HA6H9u3bd8F+l8ul7OxsSaqWNwsBAAAAAADqgyCTUQ8ktK9Q3YkJHRRk8qshpxIsJoPuG1Sx73r/oPaymC58idsfrV27VitXrpTT6dT+/ftVUFDg65AAAAAAAAAAAKhxfvNE49ixY8rJyZHZbFbPnj3LrJeQkCBJWrJkyQX7Vq1apdOnT6tz585q3rx5jcUKAAAAAAAQSMwmo4bFRWt8/zbl1hvfv60S46Jk9uMk2iCzScO7RGtc3/K/6+392mhYl2gFmf1/tpMdO3aUGEuLiIhQSEiIDyMCAAAAAAAAAKB2+M0Tjc2bN0uSOnXqpNDQ0DLr3X777TKZTHrrrbe0adMmb3lOTo7++te/SpIeeOCBGo0VAAAAAAAg0IQGmTUpOU6v39ZT8THhJfbFx4Tr9dt6alJyZ4UGmX0UYfVpEGzW0yPj9K+xPUr9rv8a20OTkuPUINj/v+uRI0f0ySefeLeDg4PVvXt3GQyBMcMuAAAAAAAAAADl8ZuR/gMHDkiSWrduXW69zp0769FHH9Urr7yicePGqW/fvgoJCdG6detkt9t18803Kzk5uTZCBgAAAAAACCihQWaN6NpciXFRyjt7TjZ7kRqFBSvcalGQyejXM9D+UoNgs0Z0a67hXaKVX1ikU/YiRYZaFB5ikcVkCIgZaE+fPq0ZM2aoqKhIkmSxWNS9e3dFRET4ODIAAAAAAAAAAGqH3yTR5uXlSZJatGhx0br333+/OnTooPfff1+bN2+WwWBQhw4ddNttt2n06NE1HSoAAAAAAEDAMpuMMsij/MP7ZDKZ1Kz5ZTKZ/D+htDRBZpOCzFJosFktIqy+DqdaORwOpaWl6fTp05Ikg8GgoUOHymKx+DgyAAAAAAAAAABqj98k0T722GN67LHHKlw/MTFRiYmJNRgRAAAAAABA/VVQUODrEFBFHo9Hc+bM0eHDh71lAwcOVJ8+fbRp0ybfBQYAAAAAAAAAQC0LnDX2AAAAAAAAAFzU0qVLtX37du92fHy8hg4d6sOIAAAAAAAAAADwDZJoAQAAAAAAgHpi48aNWr16tXe7devWGjVqlIxGhgkBAAAAAAAAAPWP2dcBAAAAAAAAAKh52dnZWrBggXe7cePGSk1NVXBwsLfMarXKZDL5IjwAAAAAAAAAAGodU0wAAAAAAAAAAe748eOaOXOm3G63pOJk2dTUVEVGRkqSnC63zrk8imjRVq6wKB0745Dd4ZTT5fZh1AAAAAAAAAAA1CxmogUAAAAAAAACmN1u14wZM3Tu3DlJkslkUnJyslq2bFm83+HU0qxcvbUiW1tzbN7PxceE64GE9hoWF63QIIYRAQAAAAAAAACBh5loAQAAAAAAgADldDqVnp6uvLw8b9mQIUPUtWtXScUJtC8szNLDaZtKJNBK0tYcmx5O26QXFm6X3eGs1bgBAAAAAAAAAKgNJNECAAAAAAAAAcjj8Wj+/Pk6cOCAt6xPnz4aOHCgJMnpcmtpVq6mr91f7nGmr92nL7OOyuly12i8AAAAAAAAAADUNpJoAQAAAAAAgAD09ddfa/Pmzd7tTp06KSkpSQaDQZLkcLk1ZXl2hY41ZcVuOUiiBQAAAAAAAAAEGJJoAQAAAAAAgACzZcsWLV++3LvdokULpaSkyGw2e8tsBU5tO2yr0PG25thkK3BWd5gAAAAAAAAAAPgUSbQAAAAAAABAADlw4IDmzp3r3Y6IiNCYMWNktVpL1MsvcFTquLbCouoIDwAAAAAAAACAOoMkWgAAAAAAACBA5OXlKT09XS6XS5IUHByslJQUNWnS5IK6EdagSh07PMRSLTECAAAAAAAAAFBXkEQLAAAAAACASrNarQoLC/N1GPiZwsJCpaWlyW63S5KMRqOuvfZatWvXrtT64Vaz4mPCK3Ts+JhwhVvN1RUqAAAAAAAAAAB1Akm0AAAAAAAAqDCny61zLo8iWrSVKyxKx844ZHc45XS5fR1aveZyuTRr1iwdO3bMWzZo0CD17NmzzM8EmYx6IKF9hY4/MaGDgkwMJQIAAAAAAAAAAgvTRwAAAAAAAKBC7A6nlmbl6q0V2dqaY/OWx8eE64GE9hoWF63QIIabapvH49GiRYuUnZ3tLevRo4cSEhLK/ZzZZNSwuGiN799G09fuL7Pe+P5tlRgXJTNJtAAAAAAAAACAAMNTDQAAAAAAAFyU3eHUCwuzSk223Jpj08NpmzS+f1tNSu5MIm0tW7dunb777jvvdvv27ZWcnCyDwXDRz4YGmTUpOU79YptoyordFyRHT0zooMS4KNoUAAAAAAAAABCQGP0GAAAAAABAuZwut5Zm5ZY7W6kkTV+7T/1iG2tE1+bMWlpLduzYocWLF3u3o6KiNHr0aFkslgofIzTIrBFdmysxLkp5Z8/JZi9So7BghVstCjIZaUsAAAAAAAAAQMBiBBwAAAAAAADlcrjcmrI8u0J1p6zYLYfLXcMRQZKOHDmiTz75xLsdFham1NRUhYWFVfpYZpNRwSaD8g/vk/FMrpqFBSk0yEwCLQAAAAAAAAAgoDETLQAAAAAAAMplK3Bq22FbhepuzbHJVuBUaBDDTjXp9OnTmjFjhoqKiiRJFotFN9xwg6Kjoy/puAUFBdURHgAAAAAAAAAAfoGpJAAAAAAAAFCu/AJHperbCotqKBJIksPhUFpamk6fPi1JMhgMSkxMVMeOHX0cGQAAAAAAAAAA/oUkWgAAAAAAAJQrwhpUqfrhIZYaigQej0dz5szR4cOHvWUDBw5Uv379fBgVAAAAAAAAAAD+iSRaAAAAAAAAlCvcalZ8THiF6sbHhCvcaq7hiOqvpUuXavv27d7t+Ph4DR061IcRAQAAAAAAAADgv0iiBQAAAAAAQLmCTEY9kNC+QnUnJnRQkIkhp5qwceNGrV692rvdunVrjRo1SkYjP28AAAAAAAAAAKqCEXYAAAAAAACUy2wyalhctMb3b1NuvfH92yoxLkpmkmirXXZ2thYsWODdbty4sVJTUxUcHOzDqAAAAAAAAAAA8G+srQcAAAAAAICLCg0ya1JynPrFNtGUFbu1Ncfm3RcfE66JCR2UGBel0CCGm6rb8ePHNWvWLLndbkmS1WrV6NGjFRkZ6dvAAAAAAAAAAADwczzVAAAAAAAAQIWEBpk1omtzJcZFKe/sOdnsRWoUFqxwq0VBJiMz0NYAu92uGTNmqLCwUJJkMpmUnJysVq1a+TgyAAAAAAAAAAD8H0m0AAAAAAAAqDCzySiDPMo/vE8mk0nNml8mk8nk67ACktPpVEZGhvLy8rxlQ4YMUdeuXX0YFQAAAAAAAAAAgYMkWgAAAAAAAFRaQUGBr0MIaB6PR/Pnz9f+/fu9ZX369NHAgQN9GBUAAAAAAAAAAIGFNfYAAAAAAACAOubrr7/W5s2bvdudOnVSUlKSDAaDD6MCAAAAAAAAACCwkEQLAAAAAAAA1CFbtmzR8uXLvdstWrRQSkqKzGYWlQIAAAAAAAAAoDox8g4AAOo1q9Uqk8nk6zAAAAAASdKBAwc0d+5c73ZERITGjBkjq9VaK+fn+hgAgNpBnwsAAAAAQN3ATLQAAKBecrrcOufyKKJFW7nConTsjEN2h1NOl9vXoQEAAKCeysvLU3p6ulwulyQpODhYN954o5o0aVLj5+b6GACA2kGfCwAAAABA3cJMtAAAoN6xO5xampWrt1Zka2uOzVseHxOuBxLaa1hctEKDuEwCAABA7SksLFRaWprsdrskyWg06tprr1VsbGyNn5vrYwAAagd9LgAAAAAAdQ8z0QIAgHrF7nDqhYVZejhtU4mHFZK0Ncemh9M26YWF22V3OH0UIQAAAOobt9utzMxMHTt2zFs2aNAg9ezZs8bPzfUxAAC1gz4XAAAAAIC6iSRaAABQbzhdbi3NytX0tfvLrTd97T59mXWUZfQAAABQ4zwejxYuXKjdu3d7y3r06KGEhIQaPzfXxwAA1A76XAAAAAAA6i6SaAEAQL3hcLk1ZXl2hepOWbFbDh5YAAAAoIatW7dO3333nXc7NjZWycnJMhgMNX5uro8BAKgd9LkAAAAAANRdJNECAIB6w1bg1LbDtotXVPEyerYCls8DAABAzdmxY4cWL17s3Y6KilJqaqosFkutnJ/rYwAAagd9LgAAAAAAdRdJtAAAoN7IL3BUqr6tsKiGIgEAAEB9d+TIEX3yySfe7bCwMKWmpiosLKzWYuD6GACA2kGfCwAAAABA3UUSLQAAqDcirEGVqh8eUjszgAEAAKB+OX36tGbMmKGiouIEGYvFolGjRik6OrpW4+D6GACA2kGfCwAAAABA3UUSLQAAqDfCrWbFx4RXqG58TLjCreYajggAAAD1jcPhUFpamk6fPi1JMhgMSkxMVKdOnWo9Fq6PAQCoHfS5AAAAAADUXSTRotY5XW7ZHU4dyS/UjiM2HckvlN3hlNPl9nVoAIAAF2Qy6oGE9hWqOzGhg4JMXCoBAACg+ng8Hs2ZM0eHDx/2lg0YMED9+vXzSTxcHwMAUDvqa5/L8yAAAAAAgD/gVVbUKrvDqaVZuXprRba25ti85fEx4Xogob2GxUUrNIhfSwBAzTCbjBoWF63x/dto+tr9ZdYb37+tEuOiZA6QBxYAAACoG5YuXart27d7t+Pj45WYmOizeLg+BgCgdtTHPpfnQQAAAAAAf8HdKWqN3eHUCwuzSh0g2ppj08NpmzS+f1tNSu7MwAkAoMaEBpk1KTlO/WKbaMqK3RcM4k9M6KDEuCj6IgAAAFSrjRs3avXq1d7t1q1ba9SoUTIafZskw/UxAAC1oz71uTwPAgAAAAD4E+5MUSucLreWZuWW+4a1JE1fu0/9YhtrRNfmAfGmNQCgbgoNMmtE1+ZKjItS3tlzstmL1CgsWOFWi4JMRvogAAAAVKs9e/ZowYIF3u3GjRsrNTVVwcHBPozqv7g+BgCgdtSHPpfnQQAAAAAAf8NdKWqFw+XWlOXZFao7ZcVuOVzuGo4IAFDfmU1GBZsMyj+8T8YzuWoWFqTQIDOD9gAAAKhWx48f18yZM+V2F491WK1WjR49WpGRkb4N7Be4PgYAoHYEep/L8yAAAAAAgL9hJlrUCluBU9sO2y5eUcVL+dgKnCzhAwCoFQUFBb4OAQAAAAHKbrdrxowZKiwslCSZTCYlJyerVatWPo6sbFwfAwBQOwK1z+V5EAAAAADA3wTGa62o8/ILHJWqbyssqqFIAAAAAAAAap7T6VRGRoby8vK8ZUOGDFHXrl19GBUAAEDN4nkQAAAAAMDfkESLWhFhDapU/fAQSw1FAgAAAAAAULM8Ho/mz5+v/fv3e8v69OmjgQMH+jAqAACAmsfzIAAAAACAvyGJFrUi3GpWfEx4herGx4Qr3MrSPQAAAAAAwD+tXLlSmzdv9m536tRJSUlJMhgMPoyqYqxWq8LCwnwdBgAA8FM8DwIAAAAA+BuSaFErgkxGPZDQvkJ1JyZ0UJCJX00AAAAAAOB/tmzZomXLlnm3W7RooZSUFJnNdTtBxOly65zLo4gWbeUKi9KxMw7ZHU45XW5fhwYAAPwIz4MAAAAAAP6mbo/eI2CYTUYNi4vW+P5tNH3t/jLrje/fVolxUTIzaAIAAAAAAPzMgQMHNHfuXO92eHi4xowZI6vV6rugKsDucGppVq7eWpGtrTk2b3l8TLgeSGivYXHRCg1iGBEAAFwcz4MAAAAAAP6G0W/UmtAgsyYlx6lfbBNNWbH7gocyExM6KDEuiocyAAAAAADA7+Tl5Sk9PV0ul0uSFBwcrJSUFDVp0sTHkZXP7nDqhYVZpSa5bM2x6eG0TRrfv60mJXdmzAYAAFQIz4MAAAAAAP6Eu1PUqtAgs0Z0ba7EuCjZCpyyFRYpPMSicKtZQSYjbxwDAAAAAAC/U1hYqLS0NNntdkmS0WjUtddeq9jYWB9HVj6ny62lWbnlzhInSdPX7lO/2MYa0bU5YzcAAKBCeB4EAAAAAPAXJNGi1pn/MzgSGmRW84gQX4cDAAAAAABQZW63W5mZmTp27Ji3bNCgQerZs6cPo6oYh8utKcuzK1R3yordLLkMAAAqhedBAAAAAAB/wKg3AAAAAAAAUAUej0eLFi3S7t27vWU9evRQQkKCD6OqOFuBU9sO2y5eUdLWHJtsBc4ajggAAAAAAAAAgNpFEi0AAAAAAABQBevWrdOGDRu827GxsUpOTpbBYPBhVBWXX+CoVH1bYVENRQIAAAAAAAAAgG+QRAsAAAAAAABU0o4dO7R48WLvdlRUlFJTU2WxWHwYVeVEWIMqVT88xH++GwAAAAAAAAAAFUESLQAAAAAAAFAJR44c0SeffOLdDgsLU2pqqsLCwnwYVeWFW82KjwmvUN34mHCFW801HBEAAADgf6xWq9/dCwAAAAD4L5JoAQAAAAAAgFI4XW7ZHU4dyS/UjiM2Hckv1NETeZoxI01FRUWSJIvFolGjRik6OtrH0VZekMmoBxLaV6juxIQOCjIxlAgAACqutGspu8Mpp8vt69CAauF0uXXO5VFEi7ZyhUXp2BkHv+MAAACAH2L6CAAAAAAAAOAX7A6nlmbl6q0V2dqaY5MkmeVSatguNXCdliQZDAYlJiaqU6dOvgy1yswmo4bFRWt8/zaavnZ/mfXG92+rxLgomUmiBQAAFVTatZRUPLv9AwntNSwuWqFBPKaE/+J3HAAAAAgcXLkDAAAAAAAAP2N3OPXCwqxfJJZ6dE3QHm8CrST16dtP/fr1q/0Aq1FokFmTkuPUL7aJpqzYfUECwMSEDkqMiyIBAAAAVFjp11LFtubY9HDaJo3v31aTkjtzjQG/xO84AAAAEFi4agcAAAAAAAD+w+lya2lW7gUPxHubD6mt6ZR3O9vZSD2bx8vpcvv9DK2hQWaN6NpciXFRyjt7TjZ7kRqFBSvcalGQyej33w8AANSeX15LxRjzdaXlkM56grTCESuXTJKk6Wv3qV9sY43o2pxrDfiVsu4XfonfcQAAAMB/cMUOAAAAAAAA/IfD5daU5dklyjqajqmb5Yh3O9fVQKuK2umtr/fI4XLXdog1wmwyKthkUP7hfTKeyVWzsCCFBpl54A8AACrlv9dSHnUx5Wp40E9qarSrremU2hrzStSdsmJ3wFxLof4o7X6hLPyOAwAAAP6BmWgBAAAAAACA/7AVOLXtsM273cJo00DLf2eZsrmDtdzRXk6ZtDXHJluBM6CWaC0oKPB1CAAAwI/ZCpzKOnxKAy37dbn5uLe8yGPUKY+1RN1AvJZC4Pvl/UJ5+B0HAAAA/ANTSQAAAAAAAAD/kV/g8P473FCoIUG7ZTR4JEmFHpNWOGJlV7C3jq2wqNZjBAAAqKuO5tmUFPRTiQRau8esFY5YnfQ0uKA+11LwNz+/X6gIfscBAACAuo/X3gAAAAAAAID/iLAGSZKCVaThQT8p2OCSJDk9Bq1xtNVxT1iJ+uEhllqPEQAAoC46ceKEvpqXrhjTaW/ZSbdVX5+LVZ5CS/0M11LwN+fvFyqK33EAAACg7iOJFgAAAAAAAPiPcKtZXVuEqfWJDQo3nvOWf18Uo73uxiXqxseEK9zK8BoAAEB2drZmzZqlwsJCb9lBV7hWOGLlUOlJhFxLwR+FW82KjwnX1hzbRevyOw4AAAD4B6OvAwAAAAAAAADqCovRoKSGB9XcdMZbtq2omba4ml9Qd2JCBwWZGF4DAAD124YNGzR9+vQSCbRZRc30paNDmQm0EtdS8E9BJqMeSGhfobr8jgMAAAD+gat2AAAAAAAA4D/WrF6lvAO7vNv7nRFa72wlyVCi3vj+bZUYFyUzD8UBAEA95Xa7tWjRIi1YsEAej0eSZDKZdM3gIbrsyqvllqnMz3ItBX9lNhk1LC5a4/u3Kbcev+MAAACA/2D9CAAAAAAAAEDSli1btGzZMu92aGRTHfPEyXOkwFsWHxOuiQkdlBgXpdAghtYAAED9VFhYqMzMTO3evdtbFhoaquTkZMXHx6ufw6l+7ZtqyordJZa951oKgSA0yKxJyXHqF9uE33EAAAAgAHDlDgAAAAAAgHrvwIEDmjt3rnc7PDxct992ix6KbCRbgVO2wiKFh1gUbjUryGRkRikAAFBvnTx5UmlpaTp+/Li3rGnTpho9erRiYmIkFScZjujaXIlxUVxLISD9/Hc87+w52exFahQWrHCrhd9xAAAAwM+QRAsAAAAAAIB67dSpU0pPT5fL5ZIkBQcHKyUlRVFRzSQVPyBvHhHiyxABAADqhH379ikjI0MFBf+dqT82NlajR49Ww4YNS9Q1/yeRkGspBCqzySiDPMo/vE8mk0nNml8mk8nk67AAAAAAVBJJtAAAAAAAAKi3CgsLNWPGDNntdkmS0WhUUlKSYmNjfRwZAABA3fL999/rs88+k9vt9pb17NlTI0aMkMVi8WFkgG/9PKkcAAAAgP8hiRYAAAAAAAD1ktvtVmZmpo4dO+YtGzRokHr16uXDqAAAAOoWt9utpUuXas2aNd4yk8mka665RoMGDZLBYPBhdAAAAAAAXBq/SaI9efKkpk6dqq+++ko5OTkKCQlR9+7dde+992rAgAEX1F+9erWmTp2q7du3q7CwUO3bt9ett96qm266iZt5AAAAAACAes7j8WjRokXavXu3t6xHjx5KSEjwYVQAAAB1y7lz5zRnzhzt2LHDW2a1WnXdddepe/fuPowMAAAAAIDq4RdJtNnZ2brzzjt19OhRtWzZUgkJCTp48KC++eYbrVq1Sq+99pqSkpK89dPS0vTcc8/JYrGoX79+slgsWrt2rZ555hlt3LhRL774og+/DQAAAAAAAHxt3bp12rBhg3c7NjZWycnJvHwNAADwH6dOnVJ6erpyc3O9ZY0bN1ZKSopat27tw8iAuiUyMlIWi8XXYQAAAACoojqfROt0OvW73/1OR48e1R133KEnn3xSJpNJkjR37lw98cQTevLJJ5WQkKDg4GDt2bNHf/3rXxUWFqaPPvpIXbp0kSTl5OTozjvv1OzZs5WQkKDrrrvOl18LAAAAAAAAPrJz504tXrzYu92sWTOlpqby4BsAAOA/Dhw4oIyMDJ09e9Zb1qZNG40ePVqRkZG+CwyoQxxOl4pcHoU2iVGe3aGjpx0Kt1pkMRkUZDb5OjwAAAAAFVTnk2i/+OILZWVl6corr9SkSZNKzAaSkpKiBQsWaM+ePcrKylKPHj00bdo0uVwu3XPPPd4EWkmKiYnRs88+q3vvvVfTpk0jiRYAAAAAAKAeOnLkiDIzM73bYWFhGjNmjMLCwnwYFQAAQN2xefNmffrpp3K5XN6y7t27a+TIkQoKCvJhZEDdcfacU19sy9XUldnammPzlsfHhOu+Qe01vEu0GgTX+UfxAAAAAOQHSbSLFi2SJN1zzz2lLqc3derUEtvLli2TJCUlJV1Qd+DAgWrYsKF+/PFH5ebmKjo6ugYiBgAAAAAAQF10+vRppaWlqaioSJJksVh0/fXXM0YEAAAgyePxaNmyZVq5cqW3zGg06uqrr1ZCQoKMRqMPowPqDvs5p55fkKUZ6/dfsG9rjk2PZmzS7f3aaFJyHIm0AAAAgB+o81ftW7ZskST17NlTp06d0sKFC7V9+3aZzWb17t1b1157rUym4uUwjh8/rhMnTshisah9+/YXHMtkMql9+/b64YcftGPHDh6QAAAAAAAA1BMOh0NpaWmy2YpniTIYDEpMTNTll1/u48gAAAB8r6ioSHPnztW2bdu8ZcHBwUpKSlKvXr18GBlQtzicLi3ZlltqAu3Pfbxuv/q2a6wR3ZoryGyqpegAAAAAVEWdTqJ1OBw6dOiQzGazduzYoccee0x5eXne/R9//LG6dOmiKVOmKDo6WkePHpUkNW3atMy3YaOioiTJW7e6eDyeEsvaVNXPj1Edx4Pv0aaBhzYNPLTppTv/Qkttod9FWWjTwEObBh7a9NL5Y79Luwcef2tTj8ej2bNn6/Dhw96y/v37q3fv3n4Rf23xt3bFxdGml45+F3UBbRp46lqb2mw2zZo1q8S1UmRkpEaNGqW2bdvWiRjrurrWpv7IX/rcIpdHb3+dXaG6b6/M1vAu0TIZ+J3wJ/w9Bx7aNPDQppeutvtdAKjrDB6Px+PrIMpy8uRJDRgwQCaTScHBwerWrZsef/xxxcbGaufOnXr++ef1448/Kj4+XrNmzdL333+v22+/XbGxsfr8889LPebvf/97ffbZZ3r66ad1xx13XHKMWVlZstvtl3wcAAD82ZVXXlkr56HfBQCAfheoiqysLO3evdu73aJFC/Xq1UsGg8GHUQHwB/S7AALdqVOn9O233+rcuXPessjISPXs2VMNGjTwYWSob/yhz42MjFRokxgN+NtXFf7MmieHyn4iR6dOnarSOQEAqAm11e8CgL+o8zPRSsVvjrRq1UrvvPOOLBaLJKlnz5567733NGLECG3dulVLlixRdHS0JFXoAUgdzh0GAAAAAABANdm/f3+JBNpGjRqpe/fuJNACAIB6LycnR5s2bZLb7faWtWjRQt27d/c+jwPwXxaLRXl2R6U+c6qgSA34ewIAAADqtDqdRBsSEuL992233XbBDXvDhg01atQovfvuu1qzZo1uv/12SVJhYWGZxzz/Jm1oaGi1xmq1WnX55Zdf8nFcLpd+/PFHSVK3bt2YQj0A0KaBhzYNPLSp/6HfRVlo08BDmwYe2tT/VEe/S7sHHn9p0z179mjLli3e7UaNGmn8+PGKiIjwYVR1l7+0KyqONvU/9LsoDW0aeHzdph6PR9988402btzoLTMYDBowYIAGDx4so9FYq/EEAl+3KSqvqn3u0dOVS6KNDLUoKqylWrZsWelzwTf4ew48tGngoU0BANWtTifRNmzYUEFBQXI4HGrVqlWpdc6X5+XleWeiPX78uDweT6kzihw9elSSFBUVVa2xGgyGau+YTSYTnX2AoU0DD20aeGhT/0C/i4qgTQMPbRp4aFP/UN39Lu0eeOpqmx4/flyffPKJd2Y1q9Wq1NRUNW7c2MeR+Ye62q6oOtrUP9Dv4mJo08BT223qdDr16aefehNPJCkoKEjDhw9X7969ay2OQMbfqX+oap8bbrUoPiZcW3NsF60bHxOu8BALvw9+jL/nwEObBh7aFABQHer0q6Qmk0kdO3aUJOXm5pZa5/jx45Kkxo0bKzIyUtHR0XI4HNq3b98FdV0ul7KzsyWpWmavAwAAAAAAQN1jt9s1Y8YM72pFJpNJycnJZb6kDQAAUB+cOXNG77//fokE2vDwcI0dO5YEWqCCLCaD7hvUvkJ17x/UXhbThZM+AQAAAKhb6nQSrSQNHjxYkvTpp59esM/j8ejrr7+WJPXr10+SlJCQIElasmTJBfVXrVql06dPq3PnzmrevHkNRQwAAAAAAABfcTqdysjIUF5enrds8ODB6tq1qw+jAgAA8K0jR45o6tSpOnTokLcsJiZGEyZMUPv2FUsIBCAFmU0a3iVa4/q2Kbfe7f3aaFiXaAWZmR0RAAAAqOvqfBLtrbfeqvDwcK1fv15vvPGGPB6PpOIE2tdee01btmxR69atNWzYMEnS7bffLpPJpLfeekubNm3yHicnJ0d//etfJUkPPPBArX8PAAAAAAAA1CyPx6P58+dr//793rI+ffroqquu8mFUAAAAvrVjxw69++67stn+u/x8586dNX78eDVt2tSHkQH+qUGwWU+PjNO/xvZQfEx4iX3xMeH619gempQcpwbBZh9FCAAAAKAy6vyVe1RUlF555RX99re/1euvv6558+bp8ssv186dO7Vv3z5FREToH//4h4KCgiQV3/Q/+uijeuWVVzRu3Dj17dtXISEhWrdunex2u26++WYlJyf7+FsBAAAAAACguq1cuVKbN2/2bnfq1ElJSUkyGFhCFQAA1D8ej0erV6/W0qVLvWUGg0H9+/dXYmKiTCZmyASqqkGwWSO6NdfwLtHKLyjSqYIiRYZaFB5ikcVkYAZaAAAAwI/U+SRaSbrmmmv06aefasqUKVq9erWWL1+upk2b6uabb9YDDzyg1q1bl6h///33q0OHDnr//fe1efNmGQwGdejQQbfddptGjx7to28BAAAAAACAmrJlyxYtW7bMu92iRQulpKTIbPaL4S8AAIBq5XK59Nlnn5VYtdFisSgxMVF9+/blJSOgGgSZTTIZXLKfyFEDi0VRYS1JTgcAAAD8kN88RWjbtq1efPHFCtdPTExUYmJiDUYEAAAAAACAuuDAgQOaO3eudzs8PFxjxoyR1Wr1XVAAAAA+YrfblZGRof3793vLGjZsqFGjRqljx44+jAwITKdOnZIktWzZ0reBAAAAAKgSv0miBQAAAAAAAH7p1KlTSk9Pl8vlkiQFBwcrJSVFTZo08XFkAAAAte/YsWOaMWOGN6lPkqKjo5WamqqoqCjfBQYAAAAAQB1FEi0AAAAAAAD8UmFhoWbMmCG73S5JMhqNSkpKUmxsrI8jAwAAqH27du1SZmamzp075y3r2LGjUlJSFBoa6sPIAAAAAACou0iiBQAAQECxWq0ymUy+DgMAANQwt9utzMxMHTt2zFs2aNAg9erVy4dRAQAA1D6Px6P169dr8eLF8ng83vK+fftq+PDhMpt5HAgAlcEYMwAAQP3CXTMAAAACgtPllsPlUUSLtsq3O3TsjEPhVouCTEaZTUZfhwcAAKqRx+PRokWLtHv3bm9Zjx49lJCQ4MOoAAAAap/L5dKiRYv03XffecvMZrOGDBmiAQMGyGAw+DA6AIHA4XSpyOWRraBIefYiNQq1KNxqkcVkUJA5sBJNGWMGAACon0iiBQAAgN+zO5xampWrt1Zka2uOzVseHxOuBxLaa1hctEKDuPQFACBQrFu3Ths2bPBux8bGKjk5mSQRAABQrxQUFGjWrFnas2ePt6xBgwYaOXKk4uLifBgZgEBx9pxTX2zL1dSVF4673jeovYZ3iVaD4MAYd2WMGQAAoP7iKg8AAAB+ze5w6oWFWZq+dv8F+7bm2PRw2iaN799Wk5I7M8gJAEAA2LlzpxYvXuzdbtasmVJTU2WxWHwYFQAAQO06ceKE0tLSdOLECW9ZVFSURo8erebNm/swMgCBwn7OqecXZGnG+tLHXR/N2KTb+7XRpOQ4v0+kZYwZAACgfmPNAQAAAPgtp8utpVm5pQ5u/tz0tfv0ZdZROV3uWooMAADUhCNHjigzM9O7HRYWpjFjxigsLMyHUQEAANSuPXv2aNq0aSUSaDt06KAJEyaQQAugWjicLi3ZlltqAu3Pfbxuv5Zuy5XD6aqlyKofY8wAAAAgiRYAAAB+y+Fya8ry7ArVnbJitxwMcAIA4LdOnz6ttLQ0FRUVSZIsFouuv/56RUdH+zgyAACA2vPdd99p+vTpKiws9JZdeeWVuvXWW3mxCEC1KXJ59PbXFRt3fXtltpwuTw1HVHMYYwYAAABrDQAAAMBv2Qqc2nbYVqG6W3NsshU4WW4LAAA/5HA4lJaWJputuN83GAxKTEzU5Zdf7uPIAAAAaofb7daSJUu0bt06b5nJZNLgwYN11VVXyWAw+DA6AIHGVlBUqXHX/MIihQb757grY8wAAADg6g4AAAB+K7/AUan6tsIiNY8IqaFoAABATfB4PJo7d64OHz7sLRswYID69evnw6gAAABqT2FhoT755BPt2rXLWxYaGqrk5GTFx8f7MDIAgSrPXlSp+qfsRWoRYa2haGoWY8wAAAAgiRYAAAB+K8IaVKn64SGWGooEAADUlC+//FJZWVne7fj4eCUmJvowIgAAgNqTl5entLQ0HTt2zFvWtGlTjR49WjExMT6MDEAgaxRauXHUyErWr0sYYwYAAIDR1wEAAAAAVRVuNSs+JrxCdeNjwhVu5R0yAACqi9VqVVhYWI2eY+PGjVq1apV3u3Xr1ho1apSMRoa0qpPT6dSSJUt03333ady4cXrvvfd8HRIAAJC0b98+TZs2rUQCbbt27TRhwgQSaAHUqHCrpXLjrn6cWMoYMwAAAHjigFrndLlldzh1JL9QO47YdCS/UHaHU06X29ehAQAAPxNkMuqBhPYVqjsxoYOCTFz+AgBwqZwut865PIpo0VausCgdO+Ookfv6PXv2aMGCBd7txo0bKzU1VcHBwdV6nvrK5XJpxYoVevDBBxUTE6Nrr71W7733nnbu3KnJkyfr1KlTvg4RAIB6bdOmTfrwww9lt9u9ZT169NC4ceMUHl6xZC8AqCqLyaD7BlVs3PX+Qe1lMRlqOKKawxgzAAAAeE0KtcrucGppVq7eWpGtrTk2b3l8TLgeSGivYXHRCg3i1xIAAFSM2WTUsLhoje/fRtPX7i+z3vj+bZUYFyUzA5wAAFyS2rqvP378uGbOnCm3uzgx12q1avTo0YqMjLzkY9dnHo9Ha9euVXp6umbNmqXDhw+XWq99+/Zq2LBhLUcHAACk4v566dKlWr16tbfMaDTqmmuu0TXXXCODwX8T1QD4jyCzScO7RGtc3zaasb7scdfb+7XRsC7RCjKbajG66sUYMwAAAMhWRK2xO5x6YWFWqTcfW3Nsejhtk8b3b6tJyZ1JpAUAABUWGmTWpOQ49Yttoikrdl+Q0DMxoYMS46K4vgAA4BLV1n293W7XjBkzVFhYKEkymUxKTk5Wq1atqnzM+szj8Wjjxo3KyMhQRkaG9u8v/aGwxWJR//791b17d40ePVomk/8+BAcAwF85HA7Nnj1bO3bs8JZZrVZdd9116t69uw8jA1AfNQg26+mRceoX21hvr7zwRcr7B7XXsC7RahDs/+OujDEDAADUb1zloVY4XW4tzcot9+09SZq+dp/6xTbWiK7NeYsPAABUWGiQWSO6NldiXJTyzp6TzV6kRmHBCrdaFGQycl0BAMAlqq37eqfTqYyMDOXl5XnLBg8erK5du1b6WPXdli1blJ6eroyMDO3atavUOiaTSf369VNSUpLuuusutWrVSps2bardQAEAgCQpPz9faWlpys3N9ZY1btxYKSkpat26tQ8jA1CfNQg2a0S35hreJVr5hUU6ZS9SZKhF4SEWWUwGv56B9pcYYwYAAKi/SKJFrXC43JqyPLtCdaes2M1SGAAAoNLMJqMM8ij/8D6ZTCY1a34ZM6gBAFBNauO+3uPxaP78+SVmSu3Tp4+uuuqqSh2nPtuxY4d3xtlt27aVWsdoNOrKK6/U8OHDddddd6ljx47efS6Xq7ZCBQAAP3Pw4EGlp6fr7Nmz3rI2bdpo9OjRioyM9F1gACApyGxSkFkKDTarRYTV1+HUKMaYAQAA6ieSaFErbAVObTtsu3hFFS8BaStwshwGAACokoKCAl+HAABAwKmN+/qVK1dq8+bN3u1OnTopKSlJBoOhUsepb/bs2eNNnC1vFtkePXpo+PDhuuOOO5jZFwCAOmTLli2aP39+iZdZunfvrpEjRyooKMiHkQFA/cUYMwAAQP1CliJqRX6Bo1L1bYVFah4RUkPRAAAAAACAyqjp+/otW7Zo2bJl3u0WLVooJSVFZjNDV6U5ePCgZs2apfT0dK1fv77Mel26dFFSUpImTJignj17kpAMAEAd4vF4tHPnTv3000/eMqPRqKuvvloJCQkyGlmtDwAAAACA2sCTCNSKCGvl3pYOD7HUUCQAAAAAAKCyavK+/uDBg5o7d+5/PxserjFjxshqDexlQisrNzdXmZmZysjI0MqVK8usd34G33Hjxql///4kzgIAUAcVFRVp48aNOnz4sLcsODhYSUlJ6tWrlw8jAwAAAACg/iGJFrUi3GpWfEy4tuZcfOnH+JhwhVsD61fTarXKZDL5OgwAAAAAAKqkpu7rT506pfT0dO/yxcHBwUpJSVGTJk0uKd5AceLECc2ePVsZGRlatmyZ3G53qfXatWunpKQk3XbbbbrmmmuYuQ4AgDrs9OnTSktLK5FAGxkZqRtvvFHt2rXzXWAAAAAAANRTgZWpiDoryGTUAwnt9XDapovWnZjQQUGmwHjY43S55XB5FNGirfLtDh0741C41aIgk1HmAPmOAAAAAIDAVxP39YWFhZoxY4bOnj0rqXj54qSkJMXGxl5quH4tPz9f8+bNU3p6ur744gs5nc5S67Vq1UrDhw/XLbfcomHDhslsZpgPAIC67vDhw0pLS9Pp06e9ZS1bttSYMWPUqFEjH0YGAGUrft7plq3AqfwChyKsQQq3mnneCQAAgIDB6Dpqhdlk1LC4aI3v30bT1+4vs974/m2VGBcVEDdcdodTS7Ny9daK7BIz9cTHhOuBhPYaFhet0CD+BAEAAAAAdV9139e73W5lZmbq2LFj3rJBgwbV2+WLz549q/nz5ys9PV2LFi2Sw+EotV50dLSSkpI0ZswYJScny2Kx1HKkAACgqrZt26Y5c+aUeEGmRYsWGjdunEJDQ30YGQCUjeedAAAAqA8u+Yo2NzdXNptNHTt29Ja9//77+vTTT+VyuTR48GA98MADDABAoUFmTUqOU7/YJpqyYvcFN1oTEzooMS4qIG607A6nXliYVeqDxa05Nj2ctknj+7fVpOTOAfF9AQAAAACBr7ru6z0ejxYtWqTdu3d7y3r06KGEhIQai70uKigo0KJFi5SRkaH58+eroKCg1HpNmjTR8OHDNXr0aN14440KDg6u5UgBAMCl8Hg8WrlypZYtW+YtMxgMat++vTp37kzfDqDO4nknAAAA6otLupp97bXX9Pbbb2vUqFF68cUXJUlTpkzRv/71L3k8HknSzp07tW7dOn388ccymUyXHjH8WmiQWSO6NldiXJRsBU7ZCosUHmIJqCU/nC63lmblljszjyRNX7tP/WIba0TX5gHxvQEAAAAAge/n9/V5Z8/JZi9So7BghVstFb6vX7dunTZs2ODdjo2NVXJysgwGQ02GXic4HA4tWbJEGRkZmjt3rs6cOVNqvcjISA0dOlQpKSm66aabZLVaazlSAABQHZxOp+bPn6/Nmzd7y4KCgjR06FCZzSScAai7eN4JAACA+qTKd+jLly/X5MmTJUmFhYWSih8ETJs2TZI0ZMgQ9e3bVx9++KF++OEHzZw5U7fddls1hAx/Z/7PQ7XQILOaR4T4Opxq53C5NWV5doXqTlmxu0LLXAIAAAAAUFeYTUYZ5FH+4X0ymUxq1vyyCr84vXPnTi1ZssS73axZM6WmpspisdRUuD7ndDq1bNkypaena86cOcrLyyu1XsOGDTV48GDdcMMNGjt2rBo2bFjLkQIAgOp05swZZWRk6ODBg96y8PBw3XjjjWrbtq02bdrku+AA4CJ43gkAAID6pMpJtJmZmTIYDHrsscd0//33S5LWrFmjM2fOqGnTpnrjjTdkMpl09dVX64YbbtDChQtJokW9YCtwatth28UrqnipE1uBkyVOAAAAAAB+p6CgoFL1jxw5oszMTO/qRWFhYRozZozCwsJqIjyfcrlc+uabb5SRkaHMzEwdO3as1HqhoaFKSEjQyJEjNW7cODVq1KiWIwUAADUhNzdXaWlpys/P95a1aNFCqampatq0qVwulw+jA4CL43knAAAA6pMqX8n+8MMPaty4se677z5v2cqVKyVJCQkJ3hlIOnbsqDZt2mjnzp2XGCrgH/ILHJWqbyssCsgZeQEAAAAAOO/06dNKS0tTUVGRJMlisej6669XdHS0jyOrPh6PR2vXrlVGRoZmzpypw4cPl1ovODhYgwYN0ogRI3THHXeoadOmtRwpAACoSTt27NDs2bPlcPz3WUHnzp11ww03yGq1+jAyAKg4nncCAACgPqlyEu2pU6fUuXNnGQwGb9nq1atlMBjUr1+/EnXDwsJ06NChqkcJ+JEIa1Cl6oeHBO6SlQAAAAAAOBwOpaWlyWYrnsXIYDAoMTFRl19+uY8ju3Qej0cbN270Js7u27ev1HoWi0UDBgzQddddpzvvvFMxMTG1HCkAAKhpHo9Ha9as0RdffOEtO//MbNiwYd7JZwDAH/C8EwAAAPVJlZNoIyMjvQ8/pOIl+bKzs0tNoj18+LAaNmxY9SgBPxJuNSs+Jlxbcy6+xEl8TLjCrSxtAgAAAAAITB6PR3Pnzi0xK+uAAQPUt29fH0Z16bZs2aL09HRlZGRo165dpdYxmUzq16+fkpKSdNddd6lt27a1HCUAAKgtLpdLn332mTZt2uQts1gsGjp0qPr161diQhoA8Ac87wQAAEB9UuWr2Xbt2mnDhg3atWuXLrvsMn366aeSpE6dOpVYim/evHk6efKk+vfvf+nRAn4gyGTUAwnt9XDapovWnZjQQUEmY80HBQAAAACAD3z55ZfKysrybsfHxysxMdEvE0l27typjIwMpaena9u2baXWMRqNuvLKKzV8+HDddddd6tixYy1HCQAAapvdbr9gRvqwsDCNGjVKnTp18mFkAFB1PO8EAABAfVLlJNoRI0bo22+/1Z133qmePXtq+fLlMhgMGj16tKTimWmnTZum9PR0GQwGpaSkVFfMQJ1mNhk1LC5a4/u30fS1+8usN75/WyXGRcnMTSUAAAAAIABt3LhRq1at8m63bt1ao0aNktHoP/fBe/bs0cyZM5WRkaHvv/++zHo9evTQ8OHDdccdd6hr1661GCEAAPClY8eOKS0tTXl5ed6y6OhopaamKioqyoeRAcCl4XknAAAA6pMqJ9HeeuutWrt2rZYsWaKlS5dKkvr27avx48dLknJzczV9+nRJ0i233EISLeqV0CCzJiXHqV9sE01ZsbvEUifxMeGamNBBiXFRCg1iaRMAAAAAQODZs2ePFixY4N1u3LixUlNTFRwc7MOoKubQoUPexNl169aVWa9Lly5KSkrShAkT1LNnT7+cXRcAAFTdrl27lJmZqXPnznnLOnbsqJSUFIWGhvowMgCoHjzvBAAAQH1R5Stao9Go1157TStXrtT27dvVrl07DR06VCaTSZIUGxurYcOG6cYbb9Tw4cOrLWDAX4QGmTWia3MlxkUp7+w52exFahQWrHCrRUEmI29kAgAAAAAC0vHjxzVz5ky53W5JktVq1ejRoxUZGenbwMqRm5urzMxMZWRk6JtvvpHH4ym1XqdOnZSUlKRx48apf//+JM4CAFAPeTwerV+/XosXLy5xzdC3b18NHz5cZjPJZAACx8+fd9oKnLIVFik8xKJwq5nnnQAAAAgYl3wnP2jQIA0aNOiC8vDwcL3xxhuXenjAr5lNRhnkUf7hfTKZTGrW/DJvojkAAAAAAIHGbrdrxowZKiwslCSZTCYlJyerVatWPo7sQidPntTs2bOVnp6uZcuWeZN+f6ldu3ZKSkrSrbfeqoSEBBmNPCQGAKC+crlc+vzzz7VhwwZvmdls1pAhQzRgwABesAEQkMz/SZYNDTKreUSIr8MBAAAAql21vQ578uRJZWdn6/Tp0xoyZIjcbrcKCgrUoEGD6joF4LcKCgp8HQIAAAAAADXK6XQqIyNDeXl53rLBgwera9euPoyqpPz8fM2bN0/p6en64osv5HQ6S63XqlUrDR8+XLfccouGDRvGjHIAAEAFBQXKzMxUdna2t6xBgwYaOXKk4uLifBgZAAAAAAC4FJf8BGDNmjX65z//qc2bN0uSDAaDtm3bpkOHDmn06NG6/fbb9eijj/L2LQAAAAAAQIDyeDyaP3++9u/f7y3r06ePrrrqKh9GVezs2bOaP3++MjIytGjRIp07d67UetHR0UpKStKYMWOUnJwsi8VSy5ECAIC66sSJE0pLS9OJEye8Zc2aNVNqaqqaN2/uw8gAAAAAAMCluqQk2o8//ljPP/98qcvdHTlyRGfOnNHbb7+t/fv369VXX72UUwEAAAAAAKCOWrlypfcFa0nq1KmTkpKSfPZSdUFBgRYtWqSMjAx99tlnstvtpdZr0qSJhg0bptTUVN14440KDg6u5UgBAEBdt2fPHs2cOVOFhYXesg4dOiglJUVhYWE+jAwAAAAAAFSHKifRbtu2TS+88IKMRqPuvvtu3XjjjfrjH/+oH374QZLUrVs3PfLII3rzzTf1+eefa8iQIbrhhhuqLXAAAAAAAAD43tatW7Vs2TLvdosWLZSSkiKz+ZIXQKoUh8OhL774Qunp6Zo3b55Onz5dar2IiAglJiYqJSVFN910k6xWa63GCQAA/Md3332nhQsXlphM5sorr9R1111X69c6AAAAAACgZlT5Dv+dd96R2+3WM888o9tvv12SZDQavftDQkL04IMPqmnTpvrjH/+o2bNnk0QLAAAAAAAQQPLy8rR27Vrvdnh4uFJTU2stMdXpdGrZsmXKyMjQ7NmzlZeXV2q9sLAwDRkyRKNGjdKtt96qhg0b1kp8AADAP7ndbi1ZskTr1q3zlplMJiUkJOjqq6+ultn2rVarTCbTJR8HgO/x9wwAAAD4tyon0X777beKiIjQuHHjyq1300036dVXX1VWVlZVTwUAAAAAAFDnOV1uOVxu2Qqcyi9wKMIapHCrWUEmo8wm48UP4Gfsdru+/fZbuVwuSVJwcLBSUlLUtGnTGj2vy+XSN998o4yMDGVmZurYsWOl1gsNDVVCQoJGjhypcePGqVGjRjUaFwAACAznzp1TZmamdu3a5S0LDQ3ViBEj1LVr10s+fvE1o0cRLdoq3+7QsTMOhVstAXvNCAQy/p4BAACAwFDlJNqTJ08qLi7uom/bGgwGtWzZkiRaAAAAAAAQsOwOp5Zm5eqtFdnammPzlsfHhOuBhPYaFhet0KDAWfK3sLBQ3377rRwOh6Ti1YmSkpIUGxtbI+fzeDxat26d0tPTNWvWLOXk5JRaLzg4WFdffbWSk5M1YcIENWvWrEbiAQAAgSkvL09paWklXtJp0qSJRo8erZYtW17y8evbNSMQyPh7BgAAAAJHla/cw8PDdfjw4QrVzc3NVXh4eFVPBQAAAAAAUGfZHU69sDBL09fuv2Df1hybHk7bpPH922pScueAeIjqdrs1e/ZsnT592ls2aNAg9erVq1rP4/F49P333ys9PV0zZ87Uvn37Sq1nNps1cOBAXXfddbrjjjuqJcEFAADUP/v371dGRobsdru3rF27dho9enS1POOqb9eMQCDj7xkAAAAILFW+au/atatWrlyp1atXa+DAgWXWW7ZsmY4ePaprrrmmqqcCAAAAAACok5wut5Zm5Zb68PTnpq/dp36xjTWia3O/XtbT4/Fo0aJFys7O9pZdccUVSkhIqLZzbNmyRRkZGUpPTy+xjPLPmUwm9evXT8OHD9evfvUrtW3bttrODwAA6p9Nmzbps88+k8vl8pb16NFDycnJslgsl3z8+nbNCAQy/p4BAACAwFPlJNpbbrlFX3/9tZ555hlNnjxZnTt3vqDOmjVr9NRTT8lgMCg1NfWSAgUA1L7s7GytXr1affr00eWXX+7rcAAAAIA6x+Fya8ry7ItXlDRlxW4lxkX59QPUdevWacOGDd7tJk2a6LrrrpPBYLik4+7cuVMZGRnKyMjQ1q1bS61jMBh05ZVXKikpSXfddZc6dux4SecEAADweDz68ssvtWrVKm+Z0WjUNddco2uuueaSr3HOq2/XjEAg4+8ZAAAACDxVTqIdNmyYrr/+en322WcaPXq0LrvsMh05ckSS9Mgjj2jXrl3Kzs6Wx+PRkCFDdN1111Vb0ACAmnPgwAHNnDlTGRkZ+vbbbyVJVqtVhw4dUqNGjXwcHQAAAFC32Aqc2nbYVqG6W3NsshU4/XY5z507d2rJkiXe7bCwMPXs2bPKs7Pt3bvXmzj7/fffl1nviiuu0PDhw3XnnXeqa9euVToXAADALzkcDs2ZM0fbt2/3loWEhOi6667TFVdcUa3nqk/XjECg4+8ZAAAACDyXdMX+0ksvqUWLFvrggw/0008/ecsXL14sqXhpvZtvvlmTJk26tCgBADXqyJEjmjVrljIyMkrMunBeQUGBbDYbSbQAAADAL+QXOCpV31ZYpOYRITUUTc05cuSIMjMz5fF4JEkNGjRQz549FRJSue9y6NAh70t769atK7Nely5dlJSUpAkTJqhnz57VNgscAACAJOXn5ystLU25ubneskaNGmn06NFq3bp19Z+vnlwzAvUBf88AAABA4LmkJFqTyaTf//73+tWvfqUVK1Zo586dOnPmjKxWq2JjY5WQkKCYmJjqihUAUI2OHz+uTz75RBkZGVqxYoXcbnep9bp06aKnnnpKbdu2reUIAQAAgLovwhpUqfrhIVWbtdWXTp8+rbS0NBUVFUmSLBaLrr/+ep09e7ZCnz969KgyMzOVnp6ub775xpuI+0sdO3ZUUlKSxo0bpwEDBpA4CwAAasTBgweVnp5e4lqmTZs2Gj16tCIjI2vknPXhmhGoL/h7BgAAAAJPtawd0bhxY40ePbo6DgUVL5tuMpl8HQaAAHTq1CnNnTtX6enpWrp0qVwuV6n1LrvsMo0dO1a33nory6UCAAAA5Qi3mhUfE66tORdfzjM+JlzhVv9axrOoqEjp6emy2Yq/n8FgUGJiojp27KgdO3aUOX5x8uRJzZ49W+np6Vq2bFmZL+21a9dOw4cP12233aaEhAQZjcYa+y4AAABbtmzR3LlzS4yLduvWTddff72CgiqXGFcZgX7NCNQn/D0DAAAAgadartqdTqfWrVunvXv3ymazqUmTJrrsssvUq1ev6jh8veF0ueVweRTRoq3y7Q4dO+NQuNWiIJNRZhMPkQBUzZkzZ/Tpp58qIyNDn3/+uRyO0pcaatOmjTdxluVSAQAAgIoJMhn1QEJ7PZy26aJ1JyZ0UJAf3d97PB7NmTNHOTk53rIBAwao15W9da6U8YuCM6e14LP5ysjI0JIlS+R0Oks9bsuWLZWUlKSbb75Zw4cPl9nMQ2UAAFCzPB6Pli9frq+//tpbZjAYdPXVV2vw4ME1/iJPIF8zAvVNffx7djhdKnJ5ZCsoUp69SI1CLQq3WmQxGRRkZmIoAAAA+L9LekrhdDr17rvvaurUqTpz5swF+6OiovTYY48pJSXlUk5TL9gdTi3NytVbK7JLvLkYHxOuBxLaa1hctEKDeKgEoGIKCgq0cOFCpaena8GCBSooKCi1XosWLXTLLbdo7Nix6t+/P4mzAAAAQCWZTUYNi4vW+P5tNH3t/jLrje/fVolxUX71kuyXX36prKws73aXLl00YFCCFm094h2/cDsKVbBrnUx71+rkjvUqcpwr9VjR0dEaPny4xowZo5EjR8piYUlTAABQO4qKijRv3jxt3brVWxYcHKykpKRamwwmkK8Zgfqmvv09nz3n1BfbcjV15YXPsO8b1F7Du0SrQTDPsAEAAODfqnxF6/F49Lvf/U5ffPGFPB6PgoODFRsbq9DQUJ0+fVp79+5Vbm6unnrqKe3cuVOPP/54dcYdUOwOp15YmFXqjdbWHJseTtuk8f3balJyZxJpAZTp3LlzWrJkidLT0/Xpp5+W+nKDJDVt2lQ333yzxo4dq6uvvrrM5VcBAAAAVIxB0sNDO6pH60i9t2rvBQ8Wf3VVO13TsZn86ZW1jRs3atWqVd7t1q1ba9h1yfrb5zv00Te7VJC9QWezVqpg93p5ikpPnG3SpIkSExOVmpqqlJQUBQcH11b4AAAAkqTTp08rPT29xMz6kZGRuvHGG9WuXbtajSU0yKxJyXHqF9tEU1bsvuCacWJCByXGRfEcCPADP/97fmv5ThUe3aezniAddjdUfExEwPw928859fyCLM1YX/oz7EczNun2fm00KTmORFoAAAD4tSpfzc6ZM0dLliyR1WrVU089pZSUFAUFBXn3FxYWKjMzUy+//LLee+89XX311Ro4cGC1BB1InC63lmbllvumoiRNX7tP/WIba0TX5n7/xiKA6lNUVKSvvvpK6enpmjNnjvLz80utFxkZqdTUVN16660aMmQIy6UCAAAA1cTpcuuLrFz9ce5W3d6vjd6+o7cKHS7l2R1qFBqkYItRM9bt118/y9L/pnT1i/v6PXv2aMGCBd7txo0ba0Rysl59/xP98633Zf9prTyO0le7MAQ3UL+rrtH9E8bq1rG3yGq11lbYAAAAJRw+fFhpaWk6ffq0t6xly5ZKTU1V48aNfRJTaJBZI7o2V2JclPLOnpPNXqRGYcEKt1oUZDLW+etEAP91/u/ZcOgHfXdqrySpZeu2uva63moR7f8z0DqcLi3ZlltqAu3Pfbxuv/q2a6wR3ZoryMykLQAAAPBPVc6imjlzpgwGg1599VUNHjz4gv0hISEaP368mjRposcee0wffvghSbSlcLjcmrI8u0J1p6zYHRDLfgC4NC6XS19//bUyMjKUmZmpEydOlFovLCxMKSkpGjt2rJKSkkq86AAAAACgepy/r88vKNLk5bs1ZcVuXd68ocKCzTpzzqkdR07L7Smu6w/39cePH9fMmTPldrslSSaTSd9//73+9Kc/KS8vr9TPGCwhCmnTXdbL+qpB3DVqHNtcY8cNkNXPZ10CAAD+KysrS3PmzFFRUZG3rEuXLrrhhht8Pju+2WSUQR7lH94nk8mkZs0vY7UwwE+ZTUYVnSv0bh86sE/vvzNV/fr1U0JCgs//f3Mpilwevf11xZ5hv70yW8O7RItbQAAAAPirKl/K7t69W61atSo1gfbnRowYof/7v//T5s2bq3qqgGYrcGrbYdvFK6p4WQxbgdPvl/4AUHlut1tr165Venq6Zs2apSNHjpRaz2q1atSoURo7dqxGjBjBrE8AAABADfvlfb3bI2UdPl1q3bp+X2+32zVjxgwVFhY/BHY6nZo6daoOHTp0QV2DOUjBrbvK2qGPGnQZLJO1oXdfXf+eAAAgcHk8Hn3zzTf66quvvGUGg0EDBgxQYmKijMa68zJTQUHpM/sD8C/Dhg1TTk6Ojh8/Lqn4ec6aNWu0efNmJSUlqVu3bjIYDD6OsvJsBUWVeoadX1ik0GDuAQEAAOCfLulKtmHDhhevpOJl/3bv3n0ppwpY+QWOStW3FRapeURIDUUDoC7xeDz67rvvlJ6erpkzZ+rAgQOl1gsKCtKIESN066236vrrr1dYWFgtRwoAAADUX4FwX+/xeLRmzRotXLhQFovFWz579uySCbQmi4JbdZG1/ZVqED9U5gaRZR6zLn5PAAAQ2JxOp+bPn19iUpegoCANGzZMffr08WFkAAJZaGio+vXrp8OHD2vnzp06c+aMJOns2bOaM2eONmzYoOTkZDVv3tzHkVZOnr3o4pV+5pS9SC0imNgFAAAA/qnKSbTdunXT+vXrdejQIbVs2bLMeqdOndJPP/2k7t27V/VUAS3CWrnl1cNDLBevBMBveTwe/fjjj8rIyFBGRkaZLyCYzWYNHz5ct956q2688UZFRETUcqQAAAAAJP+9r/d4PPr++++99x69evXSFVdc4d2/dOlSbdu2TWazWQMGDNBVCYn66GSszA3/n707j4o6ze/F/66VVcANEJV9kUVZlCoEoVQoFNxxAVtbuzOT6U4mtyeT3MnSN8lJbm4mv9x7Jrk3uXfS3TNJJtM9TRXuLYobIArKDioIomwuCK6ArEUV9fvD8dvSFspaxfJ+nTPnDN/vh6pPdeH3+T7P93k+z/wRvf5U+ZxEREQ0O3R3d0Or1Q4pRODg4ICtW7fCx8fHgpkR0WwgEong5uYGtVqN/Px8FBYWwmAwAADu3buHL774AqtWrcK6deumzQ6Cc21H16dzGmU8EREREdFUMuZJtJ988gn279+P//Jf/gu++OILLFiw4I2Y/v5+/Nmf/RkGBgbw+7//++NKdKZysJEi2M0B1S3v3g4j2M0BDjbcBoNoJqqtrRUeXtfU1JiMEYvFWLduHVJTU5GSkoL580f28JqIiIiIiCbPd/v1ErEI/i72sLeSoqtfj7q2LhgGjQCmRr++qqoKWq0WGo0Gd+7cAQDExsYOmUBbWVkJvV6Pv/qrv8KHH34IT09P9Oj0uP7ZVY5fEBER0ZTT1taG9PR0dHR0CMcWLVqElJQUk8+uiIgmmo2NDSQSCWQyGRISErBy5UpkZmaioaEBwMtFjCUlJaiqqkJ8fDzCw8MhFostnPXbOdjIRvcMmwspiYiIiGgaG/MTjadPn2L37t1IT0/Hxo0bkZycjOXLl8PJyQk9PT24ffs2Tp06hdbWVvj6+qK4uBjFxcVvvM6PfvSjcX2A6U4uEeMjlTc+Sa98Z+zHKh/IJVO7Q0VEI9fQ0CBMnL127dqwcWvWrEFaWhp27doFFxcXM2ZIRERERETv8qpf/5fHq7E/ygPvKd3RpzPgWY8O82zlsJKJkV58D18VNlusX19XVyf0Paqrq4ecCw4ORnx8vPCzXq/H3/zN37yxoxDHL4iIiGgqqqurw5EjR6DT6YRjAQEB2LZt27Sp9khE05feMAidwQjHRR7o6NHhcZcODjYyzHFwxPvvv4+6ujqcPn1amOTf29uLzMxMlJWVITk5GUuWLLHwJxieTCLC78Z64w+1le+M/UGsN2QS0eQnRUREREQ0ScY8ifaHP/whRKKXN8NdXV04dOgQDh06NCTGaHxZaeXOnTtCdZPXz4lEolk/iVYqESMh0AX7o9zxVeHdYeP2R3kgPtAZUj6EIprW7t27h0OHDkGj0aCkpGTYOIVCgbS0NOzevXtKD6IQEREREc12UokY6kAXRHnNR17dY/zg16VDKvUEuzngg2hPnP9xHOZYS83Wr29qahImzlZUVJiMWbJkCVJSUoSfHRwc8P7775us2MbxCyIiIppKjEYjrl69ivPnzw85HhUVhYSEBEgkEgtlRkSzRY9Ojws1bfg8r+GNPuBHKm8kBLrA398f3t7eKCgoQH5+PvR6PQDg4cOH+Ld/+zeEhYUhISEBdnZ2lvoYw5JLJVAHueA9hTu+Lh6+D7hP6Y6EIBfIpbzuEhEREdH0NeZJtJGRkROZx6xmK5fi0+RAKL3m47O8+jc6Wh+rfBAf6AxbObdCJJqOWltbcfjwYWg0GhQUFAwbFxYWhtTUVOzZswfe3t5mzJCIiIiIiMbDCOCfc26bnFxa3dKJnxy+jv1RHvg0edmk5vHgwQNh0V5RUdGwcUFBQdiwYQMWLlwoVG2zsrLC9u3b37rlMccviIiIaCowGAw4derUkIVCMpkM69evh1KpFArAEBFNlh6dHj89XTNsH/CT9EqhD2grl0KlUiE8PBynT5/GrVu3hNjKykrU1NRg3bp1iIyMhFg8tRYj2llJ8d82BULpNQ9fXH5zsvAPYr2REOQCOyv2AYmIiIhoehvzHe2XX345kXnMerZyKZJCXBEf6Izn3f3o7BnAXHsrONjIIJeIWcGFaJp58uQJjh49Cq1Wi4sXL2JwcNBkXGBgINLS0pCamoqAgAAzZ0lEREREROOlNwziQk3bW6uzAsBXhc1Qes1DUojrhPbxHz16JCzay8/PF3YF+i4/Pz+o1Wrs27cP4eHh+I//+A88fvwYACAWi5GYmAgvL693vh/HL4iIiMiSenp6kJGRgebmZuGYvb09tmzZAn9/fwtmRkSzxVj7gA4ODkhLS0NjYyMyMzPx7NkzAEB/fz/OnDmDsrIyJCcnw9PT0wyfYuTsrKRIWu4KdZALOvoG0N4zACdbGRysZZBJRDOyAm1raysyMzOxYMEChIWFWTodIiIiIjIDLgubQqQSMUQwouNhMyQSCRa6+nLLIaJppKOjA8ePH4dGo8GFCxeEbXm+y8fHR5g4GxISwsoIRERERETTmM4wiM8uNowo9rO8esQHOo97oumzZ89w9OhRaDQa5ObmDrtoz8PDA4mJidi7dy9UKhXEYjEGBwfx9ddfCxNoASA2NhYREREjfn+OXxAREZElPH78GOnp6Xj+/LlwzMXFBSkpKXB2drZgZkQ0m4y3D+jl5YUf/vCHKCwsRF5enrA7yOPHj/Gf//mfCA4ORmJiIhwcHCYl/7GQSyWQSwFbKykWOdpYOp1J8eTJExw5ckQojvNqgaq3tzeSkpIsnB0RERERTbYJmURbXl6OCxcuoLGxEd3d3bCzs4Onpyfi4uKwevXqiXiLWaW3t9fSKRDRCHV1deH06dPQaDQ4c+aMMNjxXe7u7tizZw/S0tIQERHBibNERERERDNEZ68eNx92vjsQL7f17OzVw1Y++uGYjo4OnDhxAlqtFufOnRt20d7ixYuRmJiI3bt3Q61WQyr99r2MRiOysrJQX18vHAsLC4NKpRp1PgDHL4iIiMh86uvrcejQIfT39wvHfH19sX37dtjZ2VkwMyKabSaiDygWixEdHY3Q0FCcOXMGVVVV3/5OdTXq6uqE5+xcsDh52tvbcezYMWi1Wly4cAEGg+GNmNraWk6iJSIiIpoFxjWJtqurC3/6p3+KnJwcABiyZaBIJMKvfvUrxMXF4X/+z/8JR0fH8WVKRDRF9Pb2Ijs7G+fPn0dBQcGwD44XLVqE3bt3Iy0tDUqlEmIxtzUlIiIiIpppOnpNL6QbTmffAFwdrUcU293djZMnT0Kr1SIrK2vIpJHXubi4QK1WY+fOndi0aRNkMpnJuOLiYpSWlgo/e3l5ITk5mYv8iIiIaEorLi7GmTNnhjyDioyMRGJi4pAFQ0RE5jCRfUA7Ozvs3LkTCoUCJ0+eFHYMGRgYQHZ2NioqKpCUlARfX99x500vvXjxAidPnoRGo8HZs2eHLY6zYMECrF+/Ht///vfNnCERERERWcKYRxcGBwfxe7/3eygtLYXRaER4eDiCg4Nhb2+Pzs5OVFVV4fr167h06RI++eQT/Od//udE5k1EZFb9/f04d+4ctFotTpw4ga6uLpNxCxYswK5du5CamorY2FiuECYiIiIimuEcbeSjinewNj3B9ZW+vj5kZWVBo9EgMzMTPT09JuPmz5+P+Ph4pKSkYPv27bCysnrr69bV1eHs2bPCzwsXLkRKSsqwE26JiIiILM1gMODMmTNDFgFJpVKsXbsW0dHRXAhERBYx0X1AAFi6dKnw3D07O1tYQPns2TP85je/QUBAADZs2IC5c+eOKefZrqenB6dPn4ZWq0VmZib6+vpMxi1YsABqtRrbt2+Hu7s7ZDIZbG1tzZwtEREREVnCmCfRHjt2DCUlJViwYAH+7//9vwgLC3sjpry8HJ988gmKi4vxzTffYOvWrePJlYjIrPR6PXJycqDRaHDs2DG0t7ebjHNycsKOHTuQlpaG9evXs/oBEREREdEs4mAjRbCbA6pb3r2dZ7CbAxxs3uwv6HQ6nD9/HlqtFsePH8eLFy9M/r6joyPWr1+Pbdu2Yc+ePbCxsRlRjq2trThy5IhQvc3e3h47d+6Evb39iH5/ODY2Nlw4SERERJOit7cXhw8fRkNDg3DMzs4OmzZtQmBgoAUzo9Hq7+9HaWkp3Nzc4OXlZel0iMZtIvqApohEIkRGRiIkJATnz59HZWWl0Ie7desW7ty5gzVr1iAmJoaLIUegv78fZ8+eFYrjdHd3m4ybO3cu4uPjsX37dqSkpMDGxgYGgwGVlZXmTZiIiIiILGrMM72OHz8OkUiEf/zHfzQ5gRYAIiIi8LOf/QwHDx7E8ePHOYmWiKY8g8GAy5cvQ6vV4vDhw3jy5InJOFtbW6hUKnz00UdISkqCXD66lcdERERERDQzyCVifKTyxifple+M/VjlA7lEDODlor3c3FxotVocPXoUz58/N/k79vb2WLduHTZv3oy9e/dizpw5o8rvxYsXSE9PF7aolMlk2Lx5M1xcXEb1Oq/TGwahMxjhuMgDHT06PO7SwcFGBrlEDOlvPx8RERHRWD19+hTp6el4+vSpcGzhwoXYsWMHFi1aZMHMaKQGBgaGFKjo6OiAtbU1ysvLOQmapr2x9gFHysbGBlu3boVCocA333yDhw8fAnj5/CovLw+VlZXYuHEjAgICWJH7OwYGBpCdnQ2tVitce0yZM2cO1q9fjy1btiAtLQ12dnZmzpSIiIiIppoxT6Ktq6vD4sWLoVAo3hqnVCqxePFi1NXVjfWtiIgm1eDgIAoLC6HVanHo0CFhQOK7bGxssHnzZuzevRtubm6wtrZGWFgYKy8REREREc1iUokYCYEu2B/ljq8K7w4btz/KA+sCFqAg/9tFe48fPzYZa2NjA5VKhU2bNmHfvn1j3rJzYGAAGo0GnZ0vKySJRCLEx8cjICBgTK8HAD06PS7UtOHzvIYhlZeC3RzwkcobCYEusJVzdw4iIiIam8bGRmRkZAzZatvb2xs7duwYdxV9mlwGgwGXLl0S7nVfnwQNAH19fbh69Son0dK0N5o+YHyg85gXGrq6uuJ3f/d3ce3aNZw7dw69vb0AgI6ODmi1Wvj4+GDjxo1YsGDBmF5/pnh17dFoNDhy5Mgb155X7OzsoFKpsHnzZrz33ntwdHQ0c6ZERERENJWN+alGd3c33N3dRxQ7b9483Lp1a6xvRUQ04YxGI8rKyqDVapGRkYG7d00PdMjlciQlJSE1NRVbtmyBvb09t3EhIiIiIqIhbOVSfJocCKXXfHyWVz9kcmnQojlYN68DTdlfIOCHR9DS0mLyNaysrBATE4Pk5GS8//77cHZ2HldORqMRx44dG/J+q1evfudi6Lfp0enx09M1Jh8UV7d04pP0SuyP8sCnycs4kZaIiIhGraysDKdPn8bg4KBwLCIiAklJSZBKeW8xFb0qUKHRaHDo0CG0traajLOyssLWrVuRkpJi5gyJJsfb+oDBbg74WOWD+EDncfeLRCIRwsLCEBgYiOzsbJSWlsJoNAIA6uvr8a//+q+IiopCXFwcrKysxvVe08ng4CCuXr0KjUaDw4cPv/XaExcXh+TkZOzfv3/WTzgmIiIiouGN+c594cKFaGpqwsDAAGQy2bBxOp0OjY2NmD9//ljfiohoQhiNRlRVVUGj0UCr1aK+vt5knFQqRUJCAtLS0rBt2zY4OTmZN1EiIiIiIpp2bOVSJIW4Ij7QGR09AygsKUX2qeM4+U9HkNXcbPJ3pFIpVq9ejY0bN+LgwYNYvHjxhOWTnZ2Nmpoa4eegoCDEx8ePebtPvWEQF2ra3lppCQC+KmyG0msekkJcx1xxiYiIiGaXwcFBnD9/HoWFhcIxiUQClUqFNWvWcLvyKeZVgQqNRoOMjAzcu3fPZJxMJkNMTAw2btyIAwcOYNGiRWbOlGhyvd4HfN7dj86eAcy1t4KDjQxyiXhC+0NWVlZITk5GZGQkTp48Kfy7GxwcxJUrV3D9+nUkJiYiJCRkxl4zjUYjSktLodVqodVqcf/+fZNxcrkc0dHRvPYQERER0aiMeRLtqlWrkJmZic8//xx/8Ad/MGzc559/jq6uLqxbt26sb0VENC63bt2CVquFRqMZ8hD5dWKxGGvXrkVqaipSUlK4GpWIiIiIiEattuam8EDv9u3bJmMkEgkUCgXUajU+/PBDeHp6TngeFRUVKCgoEH5eunQptm7dCrF47A9xdYZBfHaxYUSxn+XVj2vbUiIiIpo9+vv7ceTIkSH3TjY2NkhKSsLy5cstmBm9zmg04saNG8K97nAFKiQSCZRKJTZs2IAPPvhgxDtaEk1XUokYIhjR8bAZEokEC119IZFIJu39Fi5ciA8//BA3b97EmTNn0NXVBQDo6urC0aNHUVpaiuTkZLi4uExaDuZkNBpx/fp14drT0GC6TyqRSBAVFYXExERee4iIiIhoTMY8ifbgwYM4deoU/t//+3948uQJDhw4AG9vb+F8Q0MD/vM//xMZGRkQi8U4cODAhCRMRDQSjY2NwsTZa9euDRu3Zs0apKamYteuXXB1dTVjhkRERERENBPU1dUJD/Sqq6tNxohEIqxcuRJqtRoHDx5EQEDApOXT2NiIzMxM4ed58+YhJSVl3Ft7dvbqcfNh57sDAVS3dKKzVz/urUuJiIhoZnv+/DnS09Px+PFj4dj8+fOxY8eOCa3QT2NXW1sr3Ou+rUDFqlWrhEViPj4+Zs6SyPJ6e3vN9l4ikQjBwcHw9/dHXl4eCgsLYTAYAAB3797F559/jsjISKxbtw7W1tZmy2si1dTUCNee2tpakzGvrj2vJs7y2kNERERE4zHmpxkhISH48Y9/jJ/97GfCTay1tTXs7e3R1dWFvr4+AC9XiP34xz/mimEimnT3799HRkYGtFotiouLh41TKBRITU3F7t27sXTpUjNmSEREREREM0FTU5MwFlJRUTFs3IoVK5CYmIiDBw8iJCRk0vN68uQJMjIyMDg4COBlFbcdO3bAyclp3K/d0asbVXxn3wBcHafnA1siIiKafHfv3oVWq0VPT49wzMPDAykpKXBwcLBgZtTQ0CDc676tQEV4eLiwSCwoKMiMGRIRAMhkMiQkJGDlypXIzMwUqrQajUYUFxejqqoKCQkJCAsLg0gksnC271ZfXy9ce65fv24yRiQSISwsDImJiThw4ACvPUREREQ0YcZVEuR3f/d34e7ujn/6p39CU1MTent7h6y08/Lywo9+9CNs3LhxXEk2Nja+8zWuXr2KefPmCT9fuXIFv/jFL1BbW4u+vj54e3sjLS0Nu3btmhYdBSIamdbWVhw+fBharRb5+fnDxoWGhiItLQ179uwZUjWbiIiIiIhoJB48eIBDhw5Bo9GgqKho2LhVq1Zhz5492Lx5M5YtW2a2MYienh58/fXXwqJmiUSC5ORkLFmyZEJe39FGPqp4B2vZhLwvERERzTzXrl3DyZMnhcqJABAWFobk5GTIZLyHsIRXBSo0Gg1KSkqGjQsJCYFarcaBAwcQFhZmvgSJaFhz587F+++/j1u3buH06dPo7Hy5g0hPTw+++eYblJaWIjk5eUpW+L53755w7SktLR02jtceIiIiIpps495Xb8OGDdiwYQOam5vR0NCArq4u2NnZwdvbG56enhOQInDz5k0AgK+vLwIDA03GvL4tYXp6Ov76r/8aMpkMSqUSMpkMhYWF+Iu/+AuUl5fj7//+7yckLyKyjKdPn+Lo0aPQaDS4ePGiUGXpu5YtW4a0tDSkpqZi2bJlZs6SiIiIiIimu0ePHuHw4cPQaDTIz8+H0Wg0GbdixQqkpqYiNTXVIltI6vV6aLVaPH/+XDi2du3aCa1+62AjRbCbA6pbOt8ZG+zmAAebcQ85ERER0QxjNBqRnZ2NgoIC4ZhYLEZsbCxUKhULoJjZSAtU+Pv7IzExEfv374dCoeD3RDRFBQQEwMfHB/n5+SgoKIBerwcAtLS04Je//CXCw8MRHx8POzs7i+bZ2tqKQ4cOQavVDmkPvisgIABqtZrXHiIiIiIyiwl7ouHh4QEPD4+JerkhqqqqAAAHDhxAamrqW2MbGxvxt3/7t7C3t8eXX34pbOPQ0tKCgwcP4ujRo1CpVOOujktjpzcMQmcYRGevHh29OjjayOFgI4VcIoZUIrZ0ejRFdXR04Pjx49BqtTh//rzQ+f8uHx8f4eH18uXL2akmolmP7S4REdHoPHv2DEePHoVWq0VOTs6wi/YCAgKERXuvFvzqDYPo0enN2u4ajUZkZmbi7t27wrHIyEjExMRM6PvIJWJ8pPLGJ+mV74z9WOUDOe8ziIiI6DU6nQ7Hjh1DbW2tcMza2hobNmxgVUEzevr0KY4cOQKtVvvWAhVeXl5ITEzEe++9hzVr1kAs5r0d0XQglUqxdu1ahIeHIysrC7du3RLOVVRU4ObNm1i/fj1WrVpl1n/XT548GXLtGW6Bqre3t3DtiYmJ4bWHiIiIiMxmRJNoh+tEj9ZYb3RfVaJdvnz5O2N/+ctfwmAw4Hvf+54wgRYA3Nzc8Fd/9Vf4/ve/j1/+8pdTdhJtf38/bt26BYlEAj8/Pzg4OFg6pQnVo9PjQk0bPs9rGFK9JtjNAR+pvJEQ6AJbOavV0EtdXV04efIktFotsrKyoNPpTMYtXbpUmDi7cuVKTpwlIvottrtEREQj09nZiRMnTkCj0eDcuXPDLtrz8vISJs6uWLFiSN/DUu3u5cuXce3aNeHnV5XCJrpfJJWIkRDogv1R7viq8O6wcfujPBAf6MzFOkRERCTo6OiARqNBa2urcGzu3LnYvn073N3dLZjZ7PCqQIVGo8GFCxeGvdddunQp1Go1UlNTER8fD4lEYuZMiWiiODo6Ii0tDQ0NDcjMzBR2Lenv70dWVhbKysqQnJw8aQWyAKC9vX3ItcdgMJiMW7p0KRITE4VrDyfOEhEREZEljOjpTXBw8LjfSCQSCZNhR+vmzZuwsrKCn5/fO2Nzc3MBAImJiW+ci46Oxpw5c3Djxg20tbXBxcVlTPlMpqtXr+L27dsAgDt37mDVqlWIiYmBvb29hTMbvx6dHj89XWPyYVt1Syc+Sa/E/igPfJq8jBN6ZrHe3l5kZWVBo9EgMzMTvb29JuNcXV2xZ88epKamIioqip1qIqLvYLtLRET0dt3d3cjMzIRGo0FWVhb6+/tNxi1ZsgR79uxBWloaVq1aZXJyqqXa3erqamEcBAAWLVqE7du3QyqdnLbdVi7Fp8mBUHrNx2d59W9MFv5Y5YP4QGfeWxAREZHgwYMH0Gg06OrqEo4tXboUKSkpcHJyslxiM9yrAhUajQZnzpwZtkCFq6sr1Go1du3aheTk5Em7jyQiy/D29sYPf/hDFBYWIi8vDwMDAwCAR48e4Ve/+hWWL18OtVqNOXPmTMj7vXjxQrj2nD179p3Xnj179mDjxo289hARERGRxY3ojnS4LRXM4d69e+js7ERAQADS09Nx/PhxNDY2Qi6XY+XKlfj444+xYsUKAC+3gnj69ClkMhm8vb3feC2JRAJvb29cu3YNt27dmpKTaK2trYX/r9frUVhYiNLSUqxcuRIxMTET1okxN71hEBdq2t5arQYAvipshtJrHpJCXFm1ZhbR6XQ4d+4cNBoNTpw4MWRA9XULFizAzp07kZaWhtjYWK6EJyIaBttdIiIi0/r6+pCVlQWtVouTJ0+ip6fHZJyLiwt2796N1NRUREdHv3XRnqXa3fv37+P48ePCzw4ODkhJSYGNjc24X/ttbOVSJIW4Ij7QGc+7+9HZM4C59lZwsJFBLhHznoKIiIgEVVVVOHHixJDKpyEhIdi8eTOsrKwsmNnM1Nvbi9OnT0Or1b61QMWCBQugVquxY8cObNu2DXK53MyZEpE5SSQSxMTEIDQ0FGfOnEF1dbVw7saNG6itrcXatWuhVCrH9Nytp6dnyLWnr6/PZNyra09KSgq2bt3Kaw8RERERTSkjmkT761//erLzGFZVVRUA4NatW/iHf/gHREREICoqCrW1tcjOzkZeXh7+/u//Hlu3bsWjR48AvLwJH+4Bl7OzMwAIsRPFaDQOuw3FaKxatQr3799HfX29sBpQr9ejqKgIpaWlCA8PR3R0NBwcHMb9XuakMxjx2cWGEcV+lleP+EBniGC5ydsT6fW/i4n4G5kp9Ho9cnJycOjQIRw7dgzt7e0m4xwdHbFjxw7s3r0b69evh0wmE85Z6r8nv9OZh9/p+Jl7UvtEtbsz9btnu/vm/6fpi9/pzMPvdPymY7trye9dp9Ph/PnzOHToEE6cOIEXL16YjJs/fz5SUlKwe/duqFQq4b/zuz6/Jdrd9vZ2aDQaYUKKXC7Hli1bMHfuXLP89xUBkGIQHQ+bIZFIMN/ZG2KxCMDE3KOR5fAaPfPwOx0/trs0FUy379RoNOLSpUu4fPmycEwkEiE6OhoqlQpisXhafI7JNFHfaX9/P86dO4dDhw7hm2++GbZAhZOTE9avX49t27a9sfBqtn8XE2W6/TudiqZjmwtMn+/exsYGO3bsQGRkJDIzM/HkyRMAwMDAAM6fP4+ysjJs3LjRZKGq73p17cnIyMA333yD7u5uk3Fz587F+vXrsXXr1ml17Zku3ymNHL/TmYff6fixYBkR0VAioyXLzI7Az372M3zxxRfw9fXFz3/+c3h4eAAABgcH8Ytf/AL/+I//CLlcjszMTDx+/Bj79u2Dl5cXzpw5Y/L1/viP/xiZmZn4b//tv+HAgQPjzq+mpmbYyjXjodfr0djYiIaGBmEy7SsikQju7u7w8fGBra3thL/3RLOxsYHjIg/E/MPFEf9OwZ+uRcfD5mFXStP0ZDAYUFFRgfPnzyM7O3vYibO2trZQqVRQq9WIiorialSiaWDlypVmeZ/JandnEra7REQzH9vdd9Pr9SgrK8O5c+eQm5uLzs5Ok3F2dnZYv3491Go1FArFqLeQtES7OzAwgCtXrgiTgUUiEZYvXw53d/cxvR4REb0d212i0TEYDKisrMTDhw+FY1KpFIGBgcLzHRofvV6P0tJSnD17FhcvXhx2kZitrS1WrVoFlUqFhIQE2NnZmTlTotFhm2s+RqMRTU1NuHXr1pBq4QDg6uqKoKCgN55B6/V6lJSUCP3s4Sbt29raIjIyEnFxcVCr1dPiWTYR0WxkrnaXiGi6GN3ToVHo6uqCwWCAo6PjuF7nRz/6EXbv3g17e3vMmzdPOC4Wi/HRRx+hoqICubm5SE9PR2JiIoCXD5DeZYrPHYZUKoWfnx+8vb2FybQ6nQ7Ay9ybm5tx9+5dLFmyBL6+vlN68EMikaCjRzeq3+nsGeDKlxnCaDTixo0bOHfuHC5cuCCsbP0uKysrxMbGQq1WIyYmBtbW1mbOlIhoZmC7S0REs9Xg4CAqKytx/vx5XLhwAc+fPzcZZ2Njg7i4OCQmJmL16tXjWrRn7nZ3cHAQ5eXlQyZK+Pr6cgItERERTQl9fX0oKSlBR0eHcMzGxgahoaFYsGCBBTOb/kZaoMLa2horV65ETEwMkpKSMGfOHPMmSkTTgkgkgpeXFxYvXoybN2/i/v37wrnW1lY8evQIvr6+8PT0xPXr13H27Fnk5OQMub6/7tW1JzY2Fhs2bOC1h4iIiIimnXFNojUajcjKyoJcLkdCQgKAl5Nn/+RP/gS5ubkAgNDQUPzd3/0dfHx8xpagVPrWh0Hx8fHIzc3FjRs3sGPHDgAvB2qG09/fDwATvurNxsYGAQEB434dg8GAGzduAACWL18OiUSClStXCiuLr169KmyJYTQace/ePdy/fx8rVqxATEzMkInGU8njrtE9VJxrb4WFrr6TlI15mfpOZzqj0Yjy8nJkZGTg0KFDuHv3rsk4uVyODRs2IDU1FZs3b4a9vb2ZMx2b2fidznT8TqefyWx3ZwK2uzPvO53N+J3OPPxOp5+JaHcn63s3Go0oKipCRkYGDh8+jJaWFpNx1tbWSE5Oxp49e5CcnDyhYwLmaneNRiPOnDmDx48fC8dCQ0OxefPmES0mnmj8tzwz8XudefidTj9Tud0ly5kO32lrayu0Wu2QxT5ubm7Yvn37lH1uYUkj+U6NRiMKCwuFe93Xq/u+7lWBio0bN2L//v2csGwh0+HfKQ3FMeaXFAoFHj58iFOnTqG1tRXAywWcdXV1KC0txalTp3Dr1q03fu/VtScpKQn79u2bUdee6f6d0pv4nc48/E6JiGiijXkS7cDAAL73ve+hpKQEGzZsECbR/vf//t+Rk5MjxFVWVuLAgQM4deoUnJycxp3wdy1atAgA0NvbCxcXFwDAkydPYDQaTT5EevToEQDA2dl5QvMQiUQT3jBLJBLhNSUSCWJiYqBUKlFWVob8/Hxhmwyj0Yhr167h+vXrWL58OWJjY6dcR8XBRoZgNwdUt7zcQlMiFsHfxR72VlJ09etR19YFw+DL6sDBbg5wsJHNyBud17/TmcZoNKKqqgparRZarRZ37twxGSeRSKBWq5Gamort27dPynXBnGbydzpb8TudHia73Z3uvtvuvg3bXZpO+J3OPPxOp4eJbnfH+70bjUZUVlZCo9EgIyMDTU1NJuNkMhk2btyI1NRUbN26ddIq4Zir3S0qKkJZWZnws5eXFzZt2gSpdNI2GRox/luemfi9zjz8TqeHqdbu0tQzFb/TmpoaHDt2DAMDA8KxoKAgbNmyhTuOjcDr3+mrAhWv7nWHK1Ahk8kQHR2NjRs34uDBg8KzMpoapuK/U3rTRLa5NjY2wvc+Hb/7xYsXIzw8HEeOHAHwbTEqBwcH7N27F7dv30ZWVhZevHgxa6490/07peHxO515+J0SEdFEGPOTlkOHDqG4uBjW1tbCKr3nz5/j9OnTEIlE+PGPf4yYmBj84z/+I65cuYJf/epX+MM//MNRv8/f/d3f4eHDh/jRj34EPz+/N86/Wnnr6uoKJycnuLi4oK2tDc3NzfD09BwSazAY0NDQAAATsrLQEqRSKZRKJVatWoXy8nJcvnxZWNltNBpx/fp13LhxAyEhIYiNjcXChQstnPFLcokYH6m88ZfHq7E/ygPvKd3RpzPgWY8O82zlsJKJkV58D18VNuNjlQ/kErGlU6YRunXrljBx9ubNmyZjRCIR1q1bh9TUVKSkpEy5Sd5ERDPNq3b3k/TKd8ay3SUioumiuroaGo0GWq0Wt2/fNhkjkUgQHx+PtLQ0bN++HXPnzp30vMzR7tbV1eHs2bPCzwsXLkRKSgpkMtmoX4uIiIhoohiNRuTn5w8prCISibB69WrEx8dDLOZ4w0gYjUbcuHEDWq0WGo0G9fX1JuMkEgmUSiUSExPxwQcfwMPDw8yZEtF36Q2D0BmMcFzkgY4eHR536eBgI4NcIoZ0io+5vrr2vOpnv3qGbmVlBZVKBaVSKUxK8/Pzg6+vL1asWIHNmzdDLpdbMvVJNZ2/UyIiIiIauzFPos3KyoJIJMLPf/5zREdHAwDy8vKg1+vh4+ODH/zgBwCA//W//hfWrVuH3NzcMU2ira6uRllZGfz8/PCjH/3ojfMnTpwAAKxduxYAoFKpkJGRgXPnzgk5vFJQUIAXL15g2bJlcHV1HXUuU4lEIkFkZCQiIiJQWVmJS5cuobPzZdWbV52eGzduICgoCHFxcUKVXkuRSsRQB7ogyms+8uoe4we/Lh1SpSfYzQEfRHvi/I/jMMdayk7IFNfY2ChMnK2srBw2LiYmBmlpadi1a9e0/zdHRDSdSCViJAS6YH+UO74qNF2xBAD2R3kgPtCZ7S4REU1Zt2/fFiYTVFdXm4wRiURQqVRITU3Fzp07zb6YdLLb3dbWVhw5cgRG48vdW+zt7bFz507Y29uPK28iIiKi8dDr9Th58iSuX78uHJPL5YiPj4dCobBgZtNHU1MTzp8/j8uXLw9boEIsFmPVqlVQq9X44IMP4Ovra+YsiWg4PTo9LtS04fO8hjeeeX6k8kZCoAts5ZbfOeS7amtrhX52bW3tG+f7+/tx4cIF6PV6xMTECBNpRSIRbty4gcbGRmzYsAHBwcEmd4Wdzqbrd0pERERE4zfmu7zbt29j8eLFwgRa4OUkVZFIhLi4OOHYvHnz4O7ujnv37o3pffbt24eysjL88pe/hFKpRFRUFICXVWV/9rOfoaSkBJ6enti2bZsQf+TIEXz++edQKBQICwsDALS0tOBv//ZvAQAfffTRmHKZiiQSCVauXInw8HBcu3YNeXl56OjoEM7fvHkTN2/eRGBgIOLi4iw6kdEI4J9zbpt8qFjd0omfHL6O/VEe+DR5mfmTo3e6f/8+Dh06BI1Gg+Li4mHjIiMjkZaWht27d2Pp0qVmzJCIiF4nAvDJej+ELXXCfxQ0vTHo92GMJ+L8FmJmDXMSEdFM0NTUhIyMDGi1WpSXlw8bFx0djdTUVOzatQtubm5mzPBNtnIpPk0OhNJrPj7Lq3+j3f1Y5YP4QOdRP2x78eIF0tPTodPpALzctnfz5s0WXyhLREREs1t3dze0Wu2Q5z4ODg7YsmULJ3m+w0gLVISFhSExMREHDhxAcHCw+RIkohHp0enx09M1wz7z/CS9UnjmORUmXTY0NAgTZ19f/PBd4eHhUKvVOHjwIIKCgmA0GlFdXY0zZ86gu7sbANDV1YUjR46gtLQUycnJcHZ2NtfHmFTT7TslIiIiook15ju8np6eNybIXb16FQCgVCqHHJdIJBgYGBjT+2zatAnFxcXQaDT44IMPEBoaChcXF1RVVeHBgwdYuHAhfv7zn8PKygoAsGzZMvzhH/4hfvazn+G9996DQqGAtbU1ioqK0NPTg927dyM5OXlMuUxlYrEY4eHhCA0NxY0bN3Dx4kW0t7cL52tqalBTU4OAgACoVCosWrTIrPnpDYO4UNP21qo8APBVYTOUXvOQFOLKqnhTQFtbGw4fPgyNRoP8/Pxh40JDQ5GamorU1FR4e3ubMUMiIjJFbxjE+Zo2/OXxauxTuuOLA6vQpzPgeY8Oc23lsJKJ8XXRXfxtZg3+x/YQtrtERGRxDx48wKFDh6DValFYWDhs3KpVq5Camoo9e/bA3d3djBm+m61ciqQQV8QHOqOzV4/OvgE4WMvgYCMd07aPAwMD0Gg0wq4zIpEI8fHxCAgImIz0iYiIiEakra0N6enpQ4p5LFq0CCkpKViwYIEFM5u67t+/LywSe1uBiuDgYCQmJuL9999HWFjYjKvwSDRTTJdnnvfu3ROuPSUlJcPGhYSEQK1W48CBA0JxqldEIhFCQkLg7++PvLw8FBYWYnBwEADQ3NyMzz77DAqFAmvXroW1tfVkfpxJNV2+UyIiIiKaPGOeROvi4oJHjx4JP9fW1uLJkyeQSqWIjIwUjvf29uLu3bvjGjz5m7/5G0RFReHrr78WKqsuWrQIH374IX7wgx9g3rx5Q+J/8IMfwMfHB7/61a9w/fp1iEQi+Pj4YO/evdixY8eY85gOxGIxQkNDsWLFClRVVSE3NxfPnz8Xzt+6dQu3bt2Cn58fVCoVFi9ebJa8dIZBfHaxYUSxn+XVc2tpC3r69CmOHj0KrVaL3NxcoTP8XcuWLUNaWhpSU1OxbBmrBxMRTSWv2t2O3gH8/GI9PsurR4DrHNhbSdHVr8et1hcYfLkjNNtdIiKymEePHuHIkSPQaDS4fPkyjEajybjly5cjLS0Ne/bsmfKVzaS/nSxrK5fC1XHsDxCNRiOOHTuGlpYW4djq1au5NTIRERFZVF1dHY4cOSJUyQeAgIAAbNu2DTY2NhbMbOoZaYEKd3d3bN68Ge+//z6USiUnzhJNA1P5mWdra6uwQLWgoGDYOH9/fyQmJmL//v1QKBTvvPbI5XKo1WqsXLkSmZmZaGxsBPCy71pUVIQbN25ArVYjNDR0Wl7HpvJ3SkRERETmMeZJtL6+vrh48SKysrKQlJSEX/3qVwBebuVuZ2cnxP3TP/0Tenp6EBcXN65Ek5KSkJSUNOL4+Ph4xMfHj+s9pzORSITly5cjJCQEN2/eRG5uLp4+fSqcv337Nm7fvg0fHx+oVKo3qgpPtM5ePW4+7Hx3IF5uidHZq+dWGGbU0dGB48ePQ6vV4vz589Dr9SbjvL29hYmzy5cvn5YdYSKi19XX1+PKlSuwt7eHq6ur2RaXTLbvtruDRqDm4QuTsWx3iSyvp6cHp0+fhlarxZ07d/Dnf/7n2LNnj6XTIpoUHR0d+Pd//3ccOnQI2dnZwy7aCwgIEHa7CAoKMnOWlpednY2amhrh56CgIMTHx7MPRkRERBZhNBpRWFiIc+fODTmuVCqhVqshkUgslNnU8qpAhUajwcWLF4e91/Xy8kJCQgJWrVqF8PBwRERE8L8h0TQy1Z55PnnyRLj25OXlDXvt8fb2RmJiIvbu3Ys1a9ZALB79JNB58+bhwIEDuHXrFk6fPi3snNLT04MTJ06gtLQUycnJcHNzG9dnMrep9p0SERERkfmN+e7uvffeQ25uLv7oj/4If/3Xf43Ozk6IRCLs27cPwMvKtH/yJ3+C27dvQyQSYf/+/ROWNI2cSCRCcHAwgoKCUFtbi5ycHDx58kQ4X19fj/r6enh5eWHt2rWTth1mR6/u3UGv6ewbGFfVHnq37u5unDx5EhqNBllZWUOqB7xu6dKl2LNnD9LS0rBy5Uo+tCWiGeX8+fN49uwZnj17hl/+8pfw8PCAQqHAsmXLxjSIOFWw3SWa+vr7+3H27FlotVqcOHEC3d3dwrmf/OQnnERLM9L//t//GxqNZthFe15eXsLE2elavWYiVFRUDKkYtHTpUmzdunVa35sQERHR9GUwGHDq1ClUVFQIx2QyGdatW4eoqKhZe8/2ykgLVCxZsgSJiYlITU0VCsBUVlaaMVMimihTYey1vb19yLXHYDCYjFu6dCnUajXS0tIQHx8/Yf3KgIAA+Pj4ID8/H/n5+cL7P3jwAL/4xS8QERGB+Ph42NraTsj7Tbap8J0SERERkWWNeRJtbGwsPv30U/zsZz9DR0cHpFIpvv/97yMhIQHAy8mbdXV1kMlk+OlPf4pVq1ZNWNI0eiKRCIGBgVi2bBlu3bqF3NxcPHr0SDjf2NiIxsZGeHp6QqVSwdPTc0Lf39FGPqp4B2vZhL4/vdTb24usrCxotVqcPHkSvb29JuNcXV2xe/dupKamYvXq1XxYS0Qz1pIlS4YsLmlubkZzczMcHBwQGRmJiIiIaTPQ9zq2u0RT08DAALKzs6HVanHs2DF0dHSYjJvNO2rQzNXc3IyvvvrqjeOLFy8WJs5GRkbO+kkYjY2NyMzMFH6eN28eUlJSYGVlZcGsiIiIaLbq6elBRkYGmpubhWP29vbYvHkzAgICLJiZZXV1deHkyZPQarVvLVDh6uoKtVqNXbt2ITk5GVLpt4/khpvwRkRTn6XGXru6uvDNN99Aq9XizJkzY7r2TCSpVIq1a9ciPDwcp06dwu3bt4Vz5eXluHnzJtavX4+VK1dO+eeMHE8nIiIionHdNR84cAA7duxAY2MjlixZgnnz5gnnPD098emnnyIpKQkLFy4cd6KziY2NzaRt3SMSibBs2TIEBATgzp07yM7ORltbm3C+qakJTU1NcHd3h0qlgpeX14Q8xHSwkSLYzQHVLS+3wpCIRfB3sYe9lRRd/XrUtXXBMGgEAAS7OcDBhltgTBSdTodz585Bq9Xi+PHj6OrqMhk3f/587Nq1C6mpqYiLi+P2UUQ0KyQnJwN4OWHl9clsnZ2dyM7ORl5eHpYvXw6FQgFXV1dLpTlq321334btLtHkMhgMuHTpEjQaDY4cOYKnT5+ajJszZw62bduG1NRU4dpENJMsXrwY3t7eaGhogLOzM3bv3o20tDRER0dP+Ydp5vLkyRNkZGQIW2/a2Nhgx44dcHJysmxiRERENCVM5nMDU548eYKvv/4az58/F445Oztj586dcHZ2NlseU8WrAhUajQaZmZnDFqhYsGABEhISkJKSgq1bt3IxFNEMZM6x197eXpw+fRoajQanTp1667VHrVZjx44d2LZtG+Ty0U0KHQ9HR0e89957aGhoQGZmptBu9PX14fTp0ygrK0NycvKk7YY6ETieTkRERETjvsObM2cOVqxY8cZxKysrHDhwYNjf+9GPfoTq6mpcuHBhvCnMGHrDIHQGIxwXeaCjR4fHXTo42Mggl4ghlUzsQ0WRSAQ/Pz/4+vqivr4e2dnZaG1tFc7fvXsXX375JZYsWQKVSgUfH59xTaaVS8T4SOWNvzxejf1RHnhP6Y4+nQHPenSYZyuHlUyM9OJ7+KqwGR+rfCCf4M872+j1euTm5kKj0eDo0aNob283Gefo6IgdO3YgLS0N69evh0zGlZNENLuIxWIsWbIES5YswcKFC1FaWorq6mph8oper0dFRQUqKirg4eEBhUKBZcuWTfnJPq/a3U/SK98Zy3aXaOINDg7i6tWr0Gg0OHz48JD77NfZ2Nhgy5YtSE1NRVJSEmxsbMycKZH5SKVS/PrXv8bjx4+RnJxs1gd65vSyXz+Izl49Onp1cLSRw8FG+s5+fU9PD77++mv09fUBACQSCZKTk7FkyRJzpU5ERDTtjLXdnW7M+dzglfr6ehw6dAj9/f3CMV9fX2zfvh12dnaT8p5T0UgLVDg5OSE+Ph7btm3Drl272LcjmuEme+y1v78f586dg0ajwTfffPPWa09CQgK2bduGnTt3Tuq1ZyRtrre3N374wx+isLAQeXl5GBgYAAC0tbXhP/7jP7BixQokJCRgzpw5k5bnWHE8nYiIiIgstkzq8ePHePDggaXefsrp0elxoaYNn+c1DFnlFuzmgI9U3kgIdIGtfOK/LpFIBF9fX/j4+KCxsRHZ2dloaWkRzt+/fx+/+c1vsHjxYqhUKvj6+o5pMq1UIoY60AVRXvORV/cYP/h16Ruf84NoT5z/cRzmWEtn1CCnuRgMBuTn5wtVzh4/fmwyzt7eHlu3bkVaWhoSExO5Ep6I6LcWL14Md3d3qNVqlJaWoqysDN3d3cL55uZmNDc3w8HBAZGRkYiIiICtra0FMx6eVCJGQqAL9ke546vCu8PG7Y/yQHygM9tdoglgNBpRWloKrVYLrVaL+/fvm4yTy+VITk5GamoqNm/eDHt7ezNnSmQ51tbWWLp06Yzd9WKs/Xq9Xg+tVjukytvatWsREhJilryJiIimI0uNp5ubJT5ncXExzpw5A6PRKBxbtWoVNmzYMGlbgk8ler0eOTk50Gq1by1QMWfOHKxdu1bYUYR9O6LZYzLGXgcGBpCTkwONRoNjx44N2TXtdXPmzMG6deuwdetWs117RtMWSSQSxMTEIDQ0FGfOnEF1dbUQf/36ddTW1mLt2rVQKBRTamyA4+lERERENPNHPKaBHp0ePz1dY/KmvLqlE5+kV2J/lAc+TV42aQN/IpEI3t7e8Pb2RmNjI3JycoY8+H/w4AG+/vprLFq0CCqVCv7+/qOeTGs0Av+cfRtfFZn+nD85fB37lR748+Rl4/48s4XRaERhYSE0Gg0OHTqEhw8fmoyztrbG5s2bkZaWhuTkZK6EJyJ6i1cDkbGxsaiurkZxcfGQBSadnZ3Izs5GXl4eli9fDqVSCRcXFwtmbJqtXIpPkwOh9JqPz/Lq3xjg/Fjlg/hA5xnxUJHIUoxGI65fvy5MnG1oaDAZJ5VKoVarkZaWhm3btsHR0dHMmRLRZBtrv95oNCIzMxN37377e5GRkYiJiTFL3kRERNPRVBhPNwdzf87BwUFkZWWhtLRUOCaVSrF27VpER0ePa6e6qc5gMODy5cvQarVvLVBha2sLlUqFTZs2Yf/+/ezbEc1iEzH2ajAYcOnSJWi1Whw+fBhPnz41GWdnZ4e4uDiLXHvG2hbZ29tj165dUCgUOHnyJJ48eQLg2wrfZWVlSE5Ohre3t9k+y7twPJ2IiIhoduNdnoXpDYO4UNP21lVtAPBVYTOUXvOQFOI66avbvLy88L3vfQ93795Fdnb2kId5Dx8+hEajgYuLC1QqFZYtWzaiwbP+AQPO3mwzOYH2dV8VNWOV51wkhbjCSjZ1ViBOJUajEeXl5cJkjde/n9fJZDIkJSUhNTUVW7ZsmZLboxARTWVSqRShoaFYsWIFHjx4gKKiIty8eRODg4MAXlYmqaioQEVFBTw9PaFQKBAQEACxeOqsQreVS5EU4or4QGd09urR2TcAB2vZjNzeksicampqhHux2tpakzFisRjr1q1DamoqUlJSMH/+fDNnSUTmMp5+fX5+Pq5duybE+Pv7IzExcUZPUiEiIhqPqTiePhnM/Tn7+vpw6NChIQsD7ezssGnTJgQGBo75daeykRaosLKyQmxsLJKSknDgwAEsWLDAzJkS0VT1+tjr8+5+dPYMYK69FRxsZMOOvQ4ODg659rS2tpp8bSsrK8TFxSEpKQnvv/++Ra49E9EWubu74/d+7/dQUlKC3Nxc9Pf3AwCePn2KL7/8EoGBgdiwYcOUWZQwlu+UiIiIiGYGTqK1MJ1hEJ9dNF2x6rs+y6s36xYR7u7u+PDDD3H//n1cuHABzc3Nwrm2tjZkZGTA2dkZKpUKgYGBb33Ipx804heXRvY5f3G5AYlBU6+in6VVVVVBo9FAq9Xizp07JmMkEgkSEhKQlpaG7du3w8nJybxJEhHNQCKRCEuWLMGSJUuQmJiI0tJSlJaWoqenR4hpampCU1MTHB0dERkZiYiIiClT9Vv628E9W7kUro7Wlk6HaNpqaGiAVquFRqPB9evXh42LjY1Famoqdu3aNSWrVBPRxBtrv766uho5OTnCuUWLFmH79u2zYptkIiKisZrK4+kTyZyf89mzZ/j666+HVEBcsGABUlJSsGjRojG95lQ1mgIV0dHR2LBhAz744IMZ99+BiCaOVCKGCEZ0PGyGRCLBQldfSCRDiwQZjUaUlZVBo9EgIyMD9+7dM/lar649GzduxMGDBy1+7ZmotkgsFkOpVGL58uU4d+7ckIWkNTU1uH37NmJjYxEdHT0l+sMj+U6JiIiIaOax/J3oLNfZq8fNh53vDsTLbTE6e/Vm3yZiyZIl+OCDD/DgwQNkZ2ejsbFROPfo0SMcOnQICxYsgEqlQlBQkMkKfJ29A6P6nB19A7C14p9nXV2dMHH25s2bJmNEIhHWrl2L1NRU7Ny5kyvhiYgm0Zw5c7Bu3TrExsaiuroaRUVFQyqVdHR04MKFC7h48SJWrFgBhULBSXRE09i9e/eQkZEBjUYzZEvT71IqlUhNTcXu3buxZMkSM2ZIRFPBWPr1zx614vjx48JxBwcHpKSkTJlFOERERFPVdBhPnwjm+pxNTU3IyMhAb2+vcMzb2xs7duyAvb39qF9vKjIajaiqqhImzr6tQIVSqURiYiI++OADeHh4mDlTIprOXr+OAi+vPTdu3BCuPfX19SZ/79W159WkfXd3d3OkOyIT3RbZ2tpi+/btUCgU+Oabb9DW1gbg5Y5vubm5qKioQFJSEvz9/Sck//H67ndKRERERDPb9Bs9mmE6enWjiu/sG7BYFbnFixfjwIEDePjwIbKzs4d0+J48eYIjR47g4sWLiIuLQ0hIyJDJtM97Bkb1Xu09A1jkODsfHjY2NgqTNSorK4eNi4mJEaqcWXo1KhHRbCOVShEaGooVK1bg/v37KC4uxs2bNzE4OAjg5cBfeXk5ysvL4enpCaVSCX9/f5MLTYhoamltbcWhQ4eg1WpRUFAwbFxYWBjS0tKwZ88eeHl5mTFDIppqRtuvb3n0BDknNNDr9QBebtO5fft2LogkIiIagek0nj4e5vic5eXlOHXqlDCWAQARERFISkqaEpUAx+vWrVvC5LXhClSIxWKsXLkSarUaH3zwAfz8/MycJRHNNLW1tTh8+DC0Wi1qampMxojFYqxatUq49vj6+po5y5GZrLbIzc0NH330ESoqKnDhwgVhsmp7ezvS09Ph5+eHjRs3Yt68eWPKm4iIiIhoLKb/SMg052gjH1W8g7VskjIZuUWLFmH//v1obW1FTk4Obt++LZx7+vQpjh07hry8PMTGxmLFihUQi8WYazu6vJ1GGT/d3b9/X5isUVRUNGxcZGQkUlNTsWfPHixdutSMGRIRkSkikQhLly7F0qVLoVarUVpairKyMvT09AgxTU1NaGpqgqOjIyIjIxEREcEqc0RTzKsFYVqtFhcvXoTRaDQZFxQUhLS0NKSmpk6ZqhhEZHmj6dfLYEDB2RPo7u4G8PLhaWJiIifjExERjdB0HE8fi8n8nIODgzh//jwKCwuFYxKJBCqVCmvWrIFIJBrVe08ljY2NwsTZtxWoCAsLg1qtxsGDBxEcHGy+BIloRtLpdPjyyy+RlZWFurq6YePCw8OFa09QUJAZMxybyWyLRCIRIiIiEBQUhOzsbJSVlQnjcbdv30ZDQwOio6OxZs0ayOWjy4OIiIiIaCw4idbCHGykCHZzQHXLu7fDCHZzgIPN1PnKXF1d8d577+HRo0fIyclBXV2d0MF59uwZTpw4IUym9V0WPLrPOU0HN0ejra1NWI16+fLlYeNWrFghVDnz8fExY4ZERDQaDg4OWL9+PeLi4lBVVYXi4mI8fPhQON/R0YELFy7g4sWLWLFiBZRKJZydnS2YMdHs1t7ejuPHj0Oj0eDChQswGAwm43x9fZGamoq0tDSEhISYOUsimg6+26+XiEXwd7GHvZUUXf161LV1wTBohAhGbJ7TjGdPnwm/Gxsbi4iICEulTkRENO2MtN0Fpt54+mhM1nOD/v5+HDlyZEhhDBsbGyQlJWH58uVjzteSXhWo0Gg0KC4uHjYuKCgIiYmJeP/99xEeHj6tJwsT0dTyZ3/2Z/jnf/5nk+eCg4OHXHumE3O0udbW1ti0aRMiIyNx8uRJ3L9/HwBgMBhw+fJlVFZWYsOGDQgKCuJ1m4iIiIgm1fQcQZpB5BIxPlJ545P0ynfGfqzygVwy9baBdnZ2RlpaGp48eYLs7GzcunVLmEzb3t6OkydPwiEvDzs8V6CmZRCDePtn+N1Yb0jFM7Mj9GpysUajQW5u7pCtsl63bNkyocrZsmXLzJwlERGNh1QqRVhYGEJDQ3H//n0UFRXh5s2bQtuo1+tRXl6O8vJyeHp6QqlUwt/fH2Lx1GvjiWaarq4ufPPNN9BqtThz5gx0OtPb0rm7uyM1NRWpqamIiIjgID0RvdWrfv1fHq/G/igPvKd0R5/OgGc9OsyzlcNKJkZ68T3cKMyFk/7bCbRhYWFQqVQWzJyIiGj6GWm7+1Vh85QdTx+JyXhu8Gqb7EePHgnH5s2bh5SUFCxevHg86ZrdqwIVGo0G+fn5w8b5+/sjMTER+/btg1KpZN+OiCZFe3v7kJ9nyrXHnG2us7Mzfud3fgdVVVU4e/assHvLixcvcPjwYXh6eiI5ORkLFy6cqI9HRERERDQEJ9FamFQiRkKgC/ZHueOrwrvDxu2P8kB8oDOkU3jQb8GCBUhNTcWzZ8+QnZ2NmpoaYcJQZ2cnOq/n44CDDQq7F6LOsMDkZNr9Sg+og1xgJZOYO/1J09HRgczMTJw7dw7FxcXQ6/Um47y9vYUqZ8uXL5+2nWoiInpJJBJh6dKlWLp0KTo7O1FaWoqysjL09PQIMU1NTWhqaoKTkxMiIyMRHh4OGxsbC2ZNNPP09vbi1KlT0Gq1yMzMRF9fn8m4RYsWYc+ePUhNTUVUVBTvxYhoxKQSMdSBLojymo+8usf4wa9Lh1SNC3ZzwNZFPfBBm3DMy8sLycnJvNYQERGN0kja3Q+iPXH+x3GYYy2d0uPpbzPRzw3u3r0LrVY7ZEzCw8MDKSkpcHBwmLC8J9PTp09x9OhRaLXatxao8PT0RGJiIvbu3Yu4uDguWiaiSfcP//AP6O/vh8FgwO/93u9h7dq1M+LaY+42VyQSYfny5QgICEBubi6Ki4uFa31TUxM+++wzKBQKqFQqWFtbj+u9iIiIiIi+i5NopwBbuRSfJgdC6TUfn+XVv9EB+Vjlg/hAZ9jKp8fXNW/ePOzevRvPnz9HTk4Oqqurhcm0ooFerJbfxUpRK8r7XVBnWAgDxAh2c8CHMZ6I81uImVCEtru7GydPnoRWq8Xp06eHrXK2dOlSYbLGqlWr+ACViGiGcnBwwPr16xEXF4eqqioUFRWhtbVVON/e3o7z58/j4sWLWLFiBRQKBZydnS2YMdH01t/fj7Nnz0Kr1eKbb75BV1eXybgFCxZg9+7dSE1NxZo1ayCRzJyFXERkXkYA/5xz2+Qkl47Wu2h5dkfo6y5cuBApKSmQyWTmTZKIiGiGeFu7W93SiZ8cvo79UR74NHl67/A1Uc8Nrl27hpMnT8JgMAjHQkNDsWnTpil/P9LR0YHjx49Dq9Xi/PnzwxaoWLJkCdRqNfbs2YOEhARIpdPjWQoRzQwLFy7ET37yEwAvdxyZCRNoX7FEmyuXy7FhwwasWrUKJ0+eRHNzMwBgcHAQhYWFuHHjBtRqNVasWMHnqkREREQ0YTiSMEXYyqVICnFFfKAznnf3o7NnAHPtreBgI4NcIp6WK+bnzp2LnTt3Ij4+Htk5OaiqqgJ+O5lWbtQhSn4PcdZPsTxCgZDQFcgof4i/zazB/9gegqQQ12n3mXt7e5GVlSVUOXt9Vf/rXFxchImzq1evnlGdaSIiejupVIqwsDCEhobi3r17KC4uxs2bN4XFJgMDAygrK0NZWRm8vLygUCjg7+/PtoJoBAYGBpCTkwONRoNjx46ho6PDZJyTkxNSUlKQlpaGdevW8eEqEY2b3jCICzVtJh8qzhX1YK28QZhAK7WywbbtO2Bvb2/mLImIiGaGt7W7r/uqsBlKr3nTcpz5deN5bmA0GpGTk4P8/HzhmFgsRmxsLFQq1ZSdePSqQIVGo0FWVtawBSpcXFyQmJiInTt3Ijk5ecpPCCYimm4s3ebOnz8fBw8exK1bt3D69Gm8ePECwMt24vjx4ygtLUVycjIWLVo0Ye9JRERERLMXnxhPIVKJGCIY0fGwGRKJBAtdfWdENSwnJyckbd6KL5vnwO7ZLfhInkEiejlZSNfXg7IrF5FfkI8qvSu69QvxWV79iLagmgp0Oh3Onz8PjUaDEydOCB2477K3t0dkZCR+/OMfIzk5eUZ8r0RENHYikQju7u5wd3dHZ2cnSkpKUFZWht7eXiGmsbERjY2NcHJyQmRkJMLDw2FjY2PBrImmHoPBgEuXLkGr1eLw4cN4+vSpybg5c+Zg27ZtSE1NRWJiIuRyuZkzJaKZTGcYxGcXG944bgMdEuR3IBO93H5ywCjGLakf5i5YaO4UiYiIZozh2l1TptM489uM5bmBTqfDsWPHUFtbKxyztrbGhg0bEBYWNskZj97rBSpOnjw5ZHzkdfPnz0dCQgJSUlKwbds2WFlZmTlTIqLZYyq0uSKRCMuWLYOvry8uXbqEK1euCJXV79+/jy+++AIrV67E+vXrYWtrO6HvTURERESzy5gn0ba0tMDKygrz589/Z2xdXR3u37+P9evXC8cCAwM5kXAYww0QTWedvXpUtukAeKFiYDHCZC3wlTwVJtPaiPSIlN3Hcmkrqh654EnHCrgvdLRs0sPQ6/XIzc2FVqvF0aNH8fz5c5Nx9vb2WLduHTZt2oTAwEDY2dkhLCyMf/dERDSEg4MD4uPjERcXh6qqKhQXF6O1tVU4397ejvPnz+PixYtYsWIFlEolFi7k5BuavQYHB3H16lVotVocOnRoyL+X19nY2GDLli1ITU1FUlISJ6ET0aTp7NXj5sPOIcckMCDe6g7sxS8rpxmNQNnAYtQ8kaOzV//ObZeJiIjINFPt7nCqWzpnVLs70ucGnZ2dSE9PH9JXmjt3LrZv3w53d/fJSm/UdDodzp07B61Wi+PHj6Orq8tknKOjI+Lj47F9+3bs2rWLfTsiIjOZSm2uVCrF+vXrERERgVOnTuHOnTvCubKyMlRXVyM+Ph4RERHc1Y2IiIiIxmTMd7Lr16/HqlWr8NVXX70z9tNPP8X9+/dRWFgoHPvLv/zLsb41TUMdvd9uudQDOa4MeL6cTCttga/0CaS/nUxrLdJjlewBfvNv/4qY6GgoFApYW1tbKm2BwWBAfn6+UOXs8ePHJuNsbGygUqmwadMm7N+/H05OTjAYDKisrDRvwkRENO3IZDKEh4cjLCwMd+/eRXFxMWpqamA0vmwjBwYGUFZWhrKyMnh5eUGpVMLPz4+DgjQrGI1G1NTU4De/+Q0OHz6Me/fumYyTy+VITk5GamoqNm/ezO3SicgsXu/vvmREnLwJC8U9wpEqvQtqDM4AgM6+Abg6Wr6fS0RENB292e6+3Wxrdx88eACNRjNkQurSpUuRkpICJycnyyX2W68KVGg0Ghw9ehTt7e0m414VqNiyZQvS0tIwZ84c8yZKRERTss11cnLCvn37cOfOHZw6dUpoR/r6+nDq1CmUlZUhOTkZS5cundQ8iIiIiGjmGfEk2sHBQeH/v5rMYTQahf+ZYjQa0dLSgnv37qGvr2+cqdJ05mjz5pa5vZDhqt4DFXo3hEpb4P/aZFpdfz9yc3Nx5coVREVFISoqyuyTaY1GI4qKiqDRaHDo0CG0tLSYjLOyskJMTAySk5Nx4MABVgckIqJxEYlE8PDwgIeHBzo6OlBaWoqysrIhFWcaGxvR2NgIJycnKBQKhIeHT4lFJ0QTyWg04saNG0hPT8eXX36JBw8emIyTSqVQq9VIS0vDtm3b4Og4NXczIKKZ67v93ZXSB/CUfLtjSYN+Lsr0SwCIAAAO1jJzpkdERDSjmBpnfpvZ1O5WVVXhxIkT0Ov1wrGQkBBs3rwZVlZWFsvrVYEKjUaDI0eODFugwtbWVihQ8d5772Hu3LlmzpSIiF43ldtcX19f/MEf/AGuXr2KS5cuYWBgAADQ2tqKf//3f0doaCgSEhK4wJ6IiIiIRmxEk2jr6+uxbds2GAwG4ZhIJEJ5eTmCgoJG9EbLli0bW4Y0IzjYSBHs5oDqlje3/eiDDEV6D1Tq3RAqfYhlsieQ4OWk7f7+fuTl5eHq1avCZNrJ3K7JaDSioqICGo0GGRkZaG5uNhknlUqxevVqJCUl4eDBg3Bzc5u0nIiIaPZ6tWVhXFwcqqqqUFRUhLa2NuF8e3s7zp07h9zcXISGhkKhUHAxB017tbW10Gq10Gg0qK2tNRkjFouxbt06pKamIiUlBfPnzzdzlkRE33q9v+sreYIVsm+3Tm4z2KFgwBPG306gDXZzgIPNzNhSmoiIyBLeNs78XbOl3TUajcjLy0NeXp5wTCQSISYmBuvWrbPIDjZGoxGFhYVCgYqHDx+ajLOyssKaNWuEAhULFiwwc6ZERBPDxsYGEonE0mlMqKne5kokEqxZswahoaHIyspCTU2NcO7atWuoqanBunXrEBkZOeO+GyIiIiKaeCO6m/Xx8cGePXvw9ddfC8dEItGwFWi/y8bGBn/8x388tgxpRpBLxPhI5Y1P0iuHjemHDMV6d+zdtgE2T2+jvLxMWDmo0+lw6dIlXL16FUqlEqtXr4atre2E5VdVVSVM1rhz547JGIlEAoVCgcTERHz44Yfw8PCYsPcnIiJ6G5lMhvDwcISFheHu3bsoLi5GTU2NcC82MDCA0tJSlJaWwtvbGwqFAn5+fhZ5UEY0Fg0NDdBqtdBqtbh27dqwcUqlEu+//z527doFFxcXM2ZIRDS8V/3dn2ovIUb27ULMzkErXNR5Q49vH9Z9rPKBXML2mYiIaKxGMs78ymxodwcGBnDixAlUV1cLx6ysrKBWq7Fy5Uqz5mI0GlFeXi707e7evWsyTiaTYfXq1di4cSMOHDiAxYsXmzVPIqKJpDcMQmcwwnGRBzp6dHjcpYODjQxyiRjSad4GTZc2d86cOdizZw+ampqQmZmJp0+fAnj5bPns2bMoKytDcnIyvLy8LJIfEREREU0PI14S9kd/9EfYuHEjgJeDIQcPHoS/vz/+4i/+YtjfEYvFsLW1haen54ROeKTpRyoRIyHQBfuj3PFVoenBMwDYH+WBDaHusJV7Y+1aFfLz81FSUgKdTgfg5aBgfn4+ioqKEBkZiejoaNjZ2Y0pp7q6OmFA7/VBxteJRCKsXLkSarUaH374Ifz8/Mb0XkRERBNBJBLBw8MDHh4e6OjoQElJCcrLy9Hb2yvENDQ0oKGhAXPnzkVkZCTCw8NhbW1twayJTLt37x4yMjKg1WpRUlIybFxwcDBCQ0OxefNm7Nmzh5UjiGjKkUrEiHCWYqNtI0SGlwtceoxSnNH5owffbp28P8oD8YHO0/5BKhERkSWNZpx5pre7L168gEajQUtLi3DM0dER27ZtM+tEoaqqKmg0Gmi12rcWqFAqlcI4OwtUENFM0KPT40JNGz7PaxhSrTXYzQEfqbyREOgCW/n0rYg+3dpcT09P/P7v/z6Ki4uRm5srPFt+8uQJfv3rXyMoKAiJiYlwdHS0aJ5ERERENDWN+M7d3t4eCoVC+NnNzU2odEY0ErZyKT5NDoTSaz4+y6t/o0P5scoH8YHOQofS2toaCQkJWLNmDa5cuYLi4mL09/cDeDmZ9tWxVatWISYmBvb29u/MoampSZg4W1FRMWxcaGgo1Go1Dh48iJCQkHF+ciIioonn6OiIhIQEqFQq3LhxA8XFxWhraxPOP3/+HOfOnUNubi5CQ0OhUCiwcOFCC2ZMBLS2tuLw4cPQaDQoKCgYNs7f3x+JiYnYv38/Vq5c+dbqtEREltbT04NjhzMgMrzcSWUQYmT3+6Lb+HICran+LhEREY3daMeZZ6KHDx9Co9Ggs/Pbz+7m5oadO3di3rx5k/7+t27dEsbZb968aTLmVYGKxMREfPDBByxQQUQzSo9Oj5+erjE5ubS6pROfpFdif5QHPk1eNq3bo+nW5orFYkRFRWH58uU4d+4crl+/Lpy7efMm6urqEBcXh9WrV0MqnRo5ExEREdHUMOa7w5ycnInMg2YJW7kUSSGuiA90RmevHp19A3CwlsHBRjrs1ibW1tZYv349YmJicPXqVRQVFaGvrw8AoNfrUVhYiNLSUkRERGDNmjWYM2fOkN9/8OCBUOWsqKho2NxerUDcv38/IiIiIBKJJvbDExERTQKZTIaIiAiEh4fj7t27KCoqQm1tLYzGl5XwBgYGUFpaitLSUnh7e0OpVMLPz4/tHJnNkydPcPToUWg0GuTl5WFwcNBknJeXFxITE/Hee+8hNjZW+Bs1GAzmTJeIaFT0ej20Wi2ePXsmHNu+Yzt+z8NvRP1dIiIiGpuxjDPPFLW1tThx4gQGBgaEY4GBgdi6deuk7kTT2NiIjIwMaDQaVFZWDhsXGhqKxMREHDhwgAUqiGhG0hsGcaGm7a3VWQHgq8JmKL3mISnEdVq3S9OxzbWzs8OOHTsQGRmJkydP4tGjRwBe9uFzcnJQUVGBpKQkLvAgIiIiIgGXWJHZSX/bobKVS+HqOPJBPSsrK6xduxbR0dEoLCxEYWGhsH21Xq9HcXExysrKEBERgWXLluHMmTPQaDTIz88XJhJ9l5+fnzBZY/Xq1ZxQRERE05ZIJIKHhwc8PDzQ3t6O0tJSlJeXC20lADQ0NKChoQFz586FQqFAWFjYpD5go9mrvb0dx48fh1arxfnz54edCLt06VKo1WqkpqYiPj4eEonEzJkSEY2d0WhEZmYm7t799sHp+vXrEb5iOQCMqr9LREREozfWcebpymg0or6+HrW1tcIxkUiE1atXY/369ZPSn7p//z4OHTo04gIV77//PsLDwznOTkQzms4wiM8uNowo9rO8esQHOk/JiaajMV3b3CVLluDjjz9GeXk5Lly4IBRpev78Ob7++mv4+flh48aNZqniTkRERERT24gm0apUKojFYvz617/G0qVLAQBr164d1RuJRCLk5uaOOkGi75LL5cJWG4WFhbh69aowQchgMKCkpASFhYWoqKjAjRs33phA6+npCbVajb179wp/20RERDOJk5MTEhISoFKpcOPGDRQVFQmr7YGXg4Rnz55FTk4OQkNDoVQqsWDBAgtmTDNBV1cXvvnmG2i1Wpw5cwY6nc5knKurK9RqNXbv3o2kpCRunUZE01Z+fj6uXbsm/BwWFoY1a9ZYMCMiIiKaqfR6Pa5du4b79+8Lx2QyGeLj46FUKif0vdra2nD48GFotVpcvnx52Dh/f3+o1WoWqCCiWaezV4+bDztHFFvd0onOXj1s5Rz/shSRSISVK1ciODgYFy5cQHl5ufDs+Pbt22hoaEBMTAzWrFkDmUxm4WyJiIiIyFJGdMfe1tYGkUgEvV4vHGttbR3VG3EAhSaaTCbDihUrUF9fj4sXL2L+/PlwcHAAAEgkEqxatQrh4eG4du0a6urqsHr1auzevRtqtZqTNYiIaFaQyWSIiIhAeHg4mpubkZ+fj4aGBmGQcGBgAKWlpSgtLYW3tzeUSiX8/Px430Yj1tvbi9OnT0Oj0eDUqVNDKh+/bsGCBVCr1dixYwe2bdsGuVxu5kyJiCZWdXU1cnJyhJ89PDywefNmtqFEREQ04bq7u6HRaIZMoJ0zZw62bt0KX1/fCXmPp0+f4ujRo9BqtcjNzcXg4KDJOE9PTyQmJmLv3r2Ii4tjgQoimpU6ek0vHB9OZ9/AtKreOlNZW1tj8+bNiIyMxDfffIOWlhYALws0Xbp0CZWVldiwYQMCAwMtnCkRERERWcKIZhJKJBJ88sknWLhwoXDs7//+7yctKaK36e7uxsmTJ6HVapGVlYX+/n4AgFQqRVhYGGJjY+Ho6Ajg5d9uREQEVq5cidDQUCgUCk6gJSKiWUckEsHT0xOenp5ob29HQUEBbty4IbShANDQ0ICGhgbMnTsXCoUCYWFhsLbm4C69qb+/H+fOnYNGo8E333yDrq4uk3FOTk6Ij4/Hjh07kJKSAhsbGzNnSkQ0Oe7fv4/jx48LP8+bNw979uyZlC2UiYiIaHZ79OgR0tPT0d7eLhxzdXVFSkrKkOc1Y9HR0YETJ05Ao9Hg/PnzQ4qovG7x4sVITEzEnj17kJCQwPF1Ipr1HG1GtzjcwZrVTacSFxcXfP/738f169dx7tw59PT0AAA6Oztx6NAheHl5YcOGDRbOkoiIiIjMbUSjHfb29jh//jw++ugj4di//Mu/IDQ0FP/0T/80ackRvdLX14esrCxoNBpkZmYKHZrX6fV6NDY2wsfHB35+fuju7kZ3dzcAwGg0orKyEteuXcPy5csRGxvLbauJiGhWcnJywqZNm5CYmIiKigoUFhbi+fPnwvnnz5/j7NmzyM3NFRagsM2kgYEB5OTkQKPR4NixY+jo6DAZN2fOHKxbtw5bt25FWloa7OzszJwpEdHkam9vh0ajESaZWFtb47333oOtra2FMyMiIqKZpq6uDkeOHIFO923FQ2dnZ+zbtw/29vZjes1XBSo0Gg2ysrKGvPbrXFxcoFarsWvXLiQnJ3N7ayKi1zjYSBHs5oDqls53xga7OcDBhosPphqRSITQ0FAEBgYiJycHJSUlQhX2xsZGfPHFF/D09ISfn5+FMyUiIiIicxnRXXtvb++Qlc4A0NLSgkWLFk1GTjTD6Q2D0BkG0dmrR0evDo42cjjYSCGXiCGVfLv9k06nw/nz56HVanH8+HG8ePHC5Os5Ojpi/fr12L59O3bv3i1UOTMYDKioqMClS5eE3zUajbh+/TquX7+OkJAQxMXFjXvFPhER0XQkk8mgUCgQGRmJxsZG5Ofno6mpCUajEcDLdrikpAQlJSXw8fGBUqmEr68vt6meRV5tZabVanH48GE8ffrUZJytrS1UKhU2b96Mffv2CTsCEBHNNP39/UhPTxcWa4rFYqSmpmL+/PkWzoyIiGh2Guk483RjNBpRWFiI8+fPC310APD09ERgYOCod/no7e1FVlYWtFotTp48id7eXpNx8+fPR0JCAnbs2IHt27fDyspqXJ+DiGimkkvE+EjljU/SK98Z+7HKB/Jp3CbNdHK5HBs3bsSqVauQmZmJ5uZmAMDg4CAaGhrQ0tKCgIAAzJ0718KZEhEREdFkG9Ek2sWLF6OpqQn/9b/+VygUCsjlL7epePr06ZAtDN9l+/btY8mRZpAenR4XatrweV7DkBWawW4O+EjljbV+81FUcBlarRZHjx4dUhnvdfb29li3bh22bNmCtLQ0zJkz540YiUSCVatWITw8HJWVlbh06RI6O799z6qqKlRVVSEoKAhxcXFwcXGZ+A9MREQ0xYlEInh7e8Pb2xvt7e0oKCjA9evXh1Sjqa+vR319PebOnQulUomwsDA+TJuhBgcHUVhYCI1Gg0OHDqG1tdVknJWVFeLi4pCUlIT333+f1YqJaMYbHBzE4cOH8ejRI+HYli1b4OnpabmkiIiIZrF3jTMnBLrAVj79Kv8ZDAacPn0a5eXlwjGZTIa1a9dCLpePeGGrTqfDuXPnoNVqceLEiVEXqCAiouFJJWIkBLpgf5Q7viq8O2zc/igPxAc6T+uFHbPFggULcPDgQdTW1uL06dPo6uoC8HKn1OrqaqxZs8bCGRIRERHRZBvRKNKePXvwD//wDzh16hROnToF4OWEi+bmZvz5n//5iN5IJBJxEu0s16PT46ena97oUBqNgygruoJ9v/r/MFhfiJ7OZyZ/38bGBiqVCps2bcK+fftGvOpPIpFg5cqVCA8Px/Xr13Hx4sUhWxDfvHkTN2/exLJly6BSqeDq6jr2D0lERDSNOTk5YdOmTVCr1aioqEBRUdGQBS3Pnz/HmTNnkJOTg9DQUCgUCk6enAGMRiPKysqg0WiQkZGBe/fumYyTyWSIjo5GUlISDhw4wF0piGhWOXPmDO7cuSP8vGbNGoSFhVkuISIiollsuHFmAKhu6cQn6ZXYH+WBT5OXTauJtD09PTh06BCampqEY/b29ti8eTN8fX1RWVn51t/X6/XIzc2FRqPBsWPHxlWggoiI3s5WLsWnyYFQes3HZ3n1byzo+Fjlg/hA52nVDs12IpEIgYGB8PX1xcWLF1FUVASpVAovLy9Lp0ZEREREZjCiO/cPP/wQRqMRZ86cwfPnz2EwGNDS0gK5XM6JEzQiesMgLtS0CQObRqMRupZb6K69jJ7ayzB0mZ44a2VlhZiYGCQnJ+P999+Hs7PzmHMQi8UICwvDihUrcOPGDVy8eBHt7e3C+draWtTW1sLf3x8qlQpubm5jfi8iIqLpTC6XQ6lUQqFQoLGxEfn5+WhqahK2kdTpdCgpKUFJSQl8fHygVCrh6+s74oo4ZHlGoxE3btyAVquFRqNBQ0ODyTiJRAKlUonExER8+OGHcHd3N3OmRESWV1RUhJKSEuHnoKAgrF+/3oIZERERzV7fHWcezleFzVB6zUNSiOu0qAD45MkTpKen49mzb8fJnZ2dkZKSAhcXFxgMBpO/ZzAYkJ+fD61Wi8OHD+Px48cm48ZaoIKIiIZnK5ciKcQV8YHOeN7dj86eAcy1t4KDjQxyiXhatD/0JplMhvXr1wttJYsvEREREc0OI17+9ju/8zv4nd/5HeHnZcuWYfny5fjNb34zKYnRzKIzDOJfc+vR33oHPbWX0V1zGYbORyZjRWIJoqNXY1NyMg4cOIDFixdPaC5isRihoaFYsWIFqqqqcPHixSGDk3V1dairq4Ofnx9UKtWEvz8REdF0IRKJ4O3tDW9vbzx//hwFBQW4ceMGdDqdEFNfX4/6+nrMmzcPCoUCYWFhsLKysmDW9Da1tbXQarXQarWoqakxGSMWi7Fq1Sqo1Wp8+OGH8PHxMXOWRERTR11dHc6ePSv87Obmhu3bt3PhCBERkYXoDIP47KLpRYDf9Vle/bTYRru+vh6HDh1Cf3+/cMzX1xfbt2+HnZ3dG/FGoxFXr16FVqtFRkYGHj58aPJ1rayssGbNGiQlJY27QAUREZkmlYghghEdD5shkUiw0NUXEonE0mnRBGC/n4iIiGh2GfMeEpGRkQgICJjIXGiGqq6uxi9/9RUu/NuvoX/eYjpIJIZ8kT+svcIxZ3kCDv9/78HV0XpS8xKJRFi+fDlCQkJw8+ZN5Obm4unTp8L527dv4/bt2/Dx8YFKpcLSpUsnNR8iIqKpbO7cudi8eTMSExNRXl6O4uLiIVtDPnv2DGfOnEFOTg7CwsKgUCgwf/58C2ZMrzQ0NAgTZ69duzZsXFhYGBITE3Hw4EEEBQWZMUMioqmpra0NR44cESqxOzo6Yu/evZDJZBbOjIiIaPbq7NXj5sPOdwcCqG7pRGevfkpvpV1SUoKsrCzhfgMAVq1ahQ0bNkAq/TZvo9GI2tpanD17FpcuXUJzc7PJ15NKpVi9ejWSkpImpUAFERGZ1tvba+kUiIiIiIhoHMY8evTll19OZB40w9TV1QmTNaqrq4eJEkHu6gtrzzDYLU+AfN63A3qdfQOTPolWyEIkQnBwMIKCglBbW4vc3Nwh2169qrDn5eUFlUoFDw8Ps+RFREQ0FcnlckRFRUGpVKK+vh5XrlxBY2OjcF6n06G4uBjFxcXw9fWFUqmEj48PV+6b2b1795CRkQGtVjtkC/LvCg4ORmJiIg4cOICwsDDzJUhENMW9ePECX3/9tVB9XS6XY+/evbC3t7dwZkRERLNbR6/u3UGvMec482gMDg7izJkzQ/prEokE69atQ3R0tNCHrqqqgkajgVarxZ07d0y+lkQigUKhQGJiIj788EOOXxMRERERERERjdLUXYJN005TUxMyMjKg0WhQUVExbJzM2QvWnuGwD1kP+UJPkzEO1uav7CMSiRAYGIhly5ahrq4OOTk5ePTokXC+sbERjY2N8PDwgEqlgqenJycEERHRrCUSieDr6wtfX188f/4cBQUFuHHjhjDZCADu3LmDO3fuYN68eVAoFAgLC4OVlZUFs57ZWltbcfjwYWg0GhQUFAwb5+/vj8TEROzbtw9KpZL3M0RE3zEwMACNRoPOzpdV7kQiEXbt2gUXFxcLZ0ZERESONvJRxVtinPld+vr6cPjwYdTX1wvHbG1tkZycjODgYKFAhUajwc2bN02+hkgkwsqVK6FWq/HBBx/A39/fXOkTEREREREREc04nERL4/LgwQMcOnQIWq0WhYWFw8YtCwxEn3MI+jyjIXfxfetkjWA3BzjYWO5PUyQSISAgAP7+/rhz5w6ys7PR1tYmnG9ubsavf/1ruLu7Q6VSwcvLi5NPiIhoVps7dy42b96MxMRElJeXo6ioCO3t7cL5Z8+e4cyZM8jJyUFYWBgUCgXmz59vuYRnkKdPn+LIkSPQarW4ePEiBgcHTcZ5eXkhMTERe/fuRWxsLMRisZkzJSKaHoxGI44dO4aWlhbh2MaNG+Hn52fBrIiIiOgVBxspgt0cUN3S+c5YS48zm/Ls2TOkp6fjyZMnwrEFCxZAoVAgMzMT+/fvR2Vl5bC/7+/vjy1btuCDDz5ASEiIGTImIiIiIiIiIpr5ptYIEk0Ljx49wuHDh6HVanH58mUYjUaTcX5+flCr1di3bx8iFUpkVbfik/TKd77+xyofyCWWn9ghEong5+cHX19fNDQ0IDs7Gw8fPhTO3717F19++SWWLFkClUrFraqJiGjWk8vliIqKglKpRH19PQoKCtDU1CSc1+l0KC4uRnFxMXx9faFUKtl+jsGjJ09x7NhxaLVaXLqYA4PBYDJuyZIlSExMRGpqKuLj4yGRSMycKRHR9JOdnY2amhrh58jISCgUihH/vk5vwIDBiM7eATzvGcBcWxkcbGSQSUSQS3kdJiIiGi+5RIyPVN7Tapz5lVc7ufX29grHjEYjvvzyS/zBH/zBsL8XFBSE+Ph4KBQKLFu2DOHh4ezfERERERERERFNIE6ipRF59uwZjh07Bo1Gg5ycnGGrnHl6ekKtVmPv3r1QqVRDqpwlBLpgf5Q7viq8O+z77I/yQHygM6RTaHBTJBLBx8cHPj4+aGxsRHZ2Nh48eCCcv3//Pn7zm9/Azc0NKpUKfn5+nAxERESzmkgkgq+vL3x9ffH8+XPk5+ejqqoKOp1OiLlz5w7u3LmDefPmQalUIjQ0FFZWVhbMemrr6urCN998g6/TNTh79iz0AzqTcS4urkhMVGPXrl1ITk6GVMrbfSKikaqoqEBBQYHws6+vLzZu3Dji3+/u1+P8zTb84nLDkOp4wW4O+N1Yb6iDXGBnxesyERHReEgl4mk5zlxeXo5Tp04NGVfPy8vDxYsXTRapeL1AxerVqzE4OPjWCrVERERERERERDR2fHpDw+rs7MSJEyeg0Whw7tw56PV6k3GLFy9GYmIidu/eDbVaPexkDRGAT9b7IWypE/6joOmNh4ofxngizm8hpvL0Uy8vL3z/+99HU1MTsrOzcf/+feFcS0sL0tPT4erqCpVKhYCAAE6mJSKiWW/u3LnYsmULNmzYgPLychQVFaG9vV04/+zZM2RlZSE7Oxvh4eFQKBSYN2+e5RKeQnp7e3H69GloNBqcOnVqSLWi14ltHGDtGQZb/2gc3LsTf7U9jJO0iIhGqbGxEZmZmcLPzs7O2LVr15CFoW/T06/H352qwdfFb07mqW7pxB9qK7FP6Y5PkwN5jSYiIhonW7kUnyYHQuk1H5/l1b8xzvyxygfxgc6wlVu+zR0cHERmZiYqKiqEY3q9HidOnMCNGzeGxHp4eCAxMdFkgQoiIiIiIiIiIpo8lh9Foimlu7sbmZmZ0Gq1OH36NPr7+03Gubi4QK1WY+fOndi0aRNkMtlbX1dvGMT5mjb85fFq7FO644sDq9CnM+B5jw5zbeWwkonxddFd/G1mDf7H9hAkhbhOmSoBpnh6euJ73/se7t69i+zsbNy9++2D0tbWVmi1Wri4uAiVaYmIiGY7uVyOqKgoKJVK3LlzB1euXEFTU5NwXqfToaioCEVFRfDz84NCoYCPj8+sW5DS39+Pc+fOQavV4sSJE+jq6jIZJ7Kyg7VHKGz9omAbEA2xzBoAoK1oQ7R/G5KWu3LbcCKiEXr69CkyMjKEynB2dnbYu3fviCuk6/QGnLvZZnIC7et+U3QXCs95vEYTERFNAFu5FEkhrogPdEZnrx6dfQNwsJbBwUYKuURs8bHljo4OHDt2DJWVlZg7d65wvKurCxqNRijOMNICFURERERERERENHk4IkPo6+tDVlYWtFotTp48iZ6eHpNx8+fPR3x8PFJSUrB9+/ZRbbmsMwzis4sN6OgdwM8v1uOzvHoEuM6BvZUUXf163Gp9gcHf7lr1WV79lNpq623c3d3x4Ycf4v79+8jOzh4yGaitrQ0ZGRlYuHAhli5dikWLFlkuUSIioilCJBLBz88Pfn5+ePr0Ka5cuYKqqirodDoh5vbt27h9+zbmz58PhUKB0NDQUd13TDcDAwPIycmBVqvF0aNH0dHRYTJOYmUL+dLlsPFVwC4wDmK5jcm4Ly43QB3kgilQdImIaMrr6enB119/jb6+PgCAVCrF3r174eTkNOLXGDAY8cWlhhHF8hpNREQ0caS/nSxrK5fC1dHa0umgu7sbJ0+ehFarRUFBAXbt2gUXFxfhfGtrK9LT02FtbY39+/ePuEAFERERERERERFNLj62maV0Oh0uXLgAjUaD48eP48WLFybjHB0dsX79emzbtg179uyBjY3pyRrv0tmrx82H326rNWgEah6afs/qlk509uqnxHZbI7VkyRIcPHgQLS0tyM7ORkPDtw9QHz9+jMePH8POzg4ymQzLly/nVlxERER4uUBny5Yt2LBhA8rKylBcXIz29nbh/NOnT5GVlYWcnByEhYVBoVBg3rx5lkt4AhkMBly+fBkajQZHjhzBkydPTMbZ2tpCpVIhdn0ifn5/ESTW9u987eqWTnT0DcCW24UTEb2VXq+HVqvFs2fPhGPbt2/H4sWLR/U6nb0DQ/q7b8NrNBER0czyqkCFRqNBZmYmenp6sHTpUhw8eBD29t/23+rr69Hf34/PP/981AUqiIiIiIiIiIhocvGpzSyi1+tx8eJFaLVaHDlyBM+fPzcZZ2dnh/Xr12Pz5s3Yu3cv5syZM+737ujVvTvoNZ19A1OiesBoubm54f3338fDhw+RnZ2N+vp64Vx3dzeOHz+Oy5cvIzY2lpNpiYiIfksul2P16tWIiorCnTt3UFBQgObmZuF8f38/ioqKUFRUBD8/PyiVSnh7e0MkElkw69EbHBxEYWEhNBoNDh06hNbWVpNxVlZWiI2NRXJyMt5//30sWLAAN1s68fk/Xx7xe7X3DGCR49gWPxERzQZGoxGZmZm4e/eucGz9+vUIDg4e9Ws97xkYVTyv0URERNObTqfD+fPnodVq3yhQsWLFCmzduhVS6bePXqytrfEv//IvcHR0tES6RERERERERET0DpxEO8MNDg4iPz8fWq0Whw8fxqNHj0zG2djYIC4uDps3b8a+ffswd+7cCc3D0UY+qngH6+m9hdWiRYuwf/9+tLW14cKFC7hz545w7unTpzh+/DguXbokTKaVSCQWzJaIiGhqEIlE8PPzg5+fH54+fYqCggJUVVVhYODbyUm3b9/G7du3MX/+fCiVSoSGhkIuH919hjkZjUaUlZVBq9VCq9Xi3r17JuNkMhmio6OxYcMGfPDBB1i0aNGQ83NtR3dv5DTKeCKi2SY/Px/Xrl0Tfg4NDcWaNWvG9Fq8RhMREc18er0eubm50Gq1OHr06BsFKkQiEdatW4e4uDjhmFgsRmxsLFQq1bRbBEpERERERERENJtwEu0MZDQaUVxcLFQ5e/Dggck4KysrxMTECFXOnJ2dJy0nBxspgt0cUN3y7i0ug90c4GAzM/40XVxckJaWhuLiYty6dQt3796F0WgEADx79gwnTpxAXl4eYmNjERoaysm0REREvzV//nxs3boVGzZsQFlZGYqLi9HR0SGcf/r0KU6fPo3s7GyEh4cjMjIS8+bNA/BycZAl21Sj0YgbN24IE2dfr0z/OolEAqVSicTERHzwwQfw8PAY9jUdbGSju5ea5guSiIgmU3V1NXJycoSfPTw8sGXLljFPbpnN12hLt7lERESTaXBwEJcvXxYKVDx+/NhknIODAw4ePIj58+cLx6ysrLBx40aEhYWZKVsiIiKaSOzvEhEREc0uM2OmIsFoNKKyshIajQYZGRloamoyGSeVSrF69Wps3LgRBw8exOLFi82Sn1wixkcqb3ySXvnO2I9VPpBLxJOflBnoDYPQGYxwX7YCju7LEKXrRlV5MW5WVwmTadvb23Hy5ElcunQJa9asQVhY2JDtvoiIiGYzKysrREdHY/Xq1bh9+zauXLmC5uZm4Xx/fz8KCwtRWFgIXz8/hK9cBQdXd3T2DuBxlw4ONjLIJWJIzXBvcevWLWg0Gmi1WtTU1JiMEYvFWLlypTBx1tfXd0SvLZOI8Lux3vhDbeU7Y38Q6w2ZhFWOiIhMuX//Po4fPy78PG/ePOzZs2dcD8Zm4zX6VV/XcZEHOnp0Zm9ziYiIgFft0SA6e/Xo6NXB0UYOBxvpuNojo9GIoqIioUBFS0uLybhXBSo2btwIW1tbPHnyRDjn5OSEHTt2wN3dfUw5EBERTTWT0eZOVezvEhEREc1OnKk3zVVXV0Or1UKj0eD27dsmYyQSCRQKBdRqNT788EN4enqaN0kAUokYCYEu2B/ljq8K7w4btz/KA/GBzjOiE9Kj0+NCTRs+z2sYUpEo2G0hPojfBcmjOlTduC5Mpu3o6MCpU6dw+fJlxMTEICIigpNpiYiIfkskEsHf3x/+/v548uQJrly5gqqqKgwMDAgxd27fxp3bt9E+aI2bemfUG+YjwG0uPlJ5IyHQBbbyiW9XGxsbhXux17cF/66wsDCo1WocPHgQwcHBo34fuVQCdZAL3lO44+vi4e+l9indkRDkArmUVRKIiL6rvb0dGo0Ger0eAGBtbY333nsPtra243rd2XaNHr6v6zCpbS4REdHrJrI9MhqNqKioEHYTeX3h5uu+W6ACADQazZAJtEuWLMHOnTvh5OQ09g9HREQ0hcymPuBs+qxERERENBTv8qah27dvCwN6VVVVJmNEIhEiIiKEKmf+/v5mzvJNtnIpPk0OhNJrPj7Lq3+j8/Gxygfxgc4zovPRo9Pjp6drTE4Yrm7pxE9aOrE/yhe///EalBVdRWVlJQYHBwEAnZ2dyMrKEibTrly5EjLZzNnuk4iIaLwWLFiArVu3YsOGDSgrK0NRUTE6OzuE807iPkTL72KV8QHqHi3Ap5rHKFb649PkZRNyn3H//n1kZGRAo9GgpKRk2Ljg4GCo1Wq8//77CA8PH/M24a/YWUnx3zYFQuk1D19cfnMg9wex3kgIcoGd1fS/lyIimmj9/f1IT09Hd3c3gJeVwVNTU4dsuzwes+Ua/a6+7ifpldgf5TFhbS4REZEpE9UeVVdXC7uJjLZARXV1NY4fPy4szgGAkJAQbN68GVZWVuP7gERERFPEbOoDzqbPSkRERERv4h3eNNHc3CxMnC0vLx82bsWKFUhMTMSBAwewfPlyM2Y4MrZyKZJCXBEf6IzOXj06+wbgYC2bUVt+6A2DuFDT9taKuwDwVWEzlF7zkJS8CbGxscjPz0dFRYUwmbarqwtnz55Ffn6+MJlWLpeb4yMQERFNC1ZWVlAoo/DY1h3/MyMPK6StcJV0CeflIgNCZG0IlrbhXvldHLPrxZ51EZCNoQJga2srDh8+DK1Wi/z8/GHj/P39kZiYiH379kGpVI574ux32VlJkbTcFeogF3T0DaC9ZwBOtjI4WMsgk4imfXVDIqLJMDg4iMOHD+PRo0fCsS1btkz4Li0z/Ro96r5uiOuM6OMTEdHUMt72qK6uThhnr66uNvm7rxeoOHjwIAICAoRzRqMRly5dwsWLF4fEx8TEYN26dRCL2fYREdHMMJv6gLPpsxIRERGRaZxEO4W1tLTg6NGj0Gg0KCwsHDYuKChIqHIWEREx4ZM1Jpr0t5NlbeVSuDpaWzqdCaczDOKziw0jiv0srx7xgc5wcnLC5s2bERsbi4KCApSXl8NgMAAAuru7ce7cOeTn5yM6OhqRkZGcTEtERPRbOsMgPs9rxINBJzzQOcFB1Ivl0lZ4SZ5DJnq5MEUkAtwlHbhz5TQ+v1WMqCglVqxY8c729OnTpzhy5Ai0Wi0uXrwoLHT5Lk9PTyQmJmLv3r2Ii4ub9IemcqkEcilgayXFIkebSX0vIqKZ4MyZM7hz547w85o1axAWFjYp7zWTr9Fj6evyoSIREU20sbRH9+/dFSbOVlRUDBv/qkDFwYMHERIS8sb5gYEBfPPNN0N2h7OyskJCQgJWrVo1+g9DREQ0hc2mPuBs+qxEREREZBon0U4xRqMRJ0+exMmTJ1FRUQGj0WgyztfXF4mJiXjvvfcQHR095SfOziadvXrcfNj57kC83P6js1cvbPvh6OiI5ORkYTJtWVmZsCVYT08PLly4gIKCAqxevRoKhYJbgxER0az33Xa302iDggEvFA24I0DyCEHSx7AX64TzT58+walTp3DhwgVEREQgMjISc+fOFc53dHTg+PHj0Gg0uHDhwpCtOV+3ZMkSqNVqpKamIiEhARLJ9K4uSEQ0UxUVFaGkpET4OSgoCOvXr7dgRtPXePq6REREE2Wk7ZH+xRNcPXECsV/+McpLS4aNe1WgYv/+/Vi5cuWw4+xdXV3QaDR48OCBcMzR0RFbt26Ft7f36D8IERHRFDeb+oCz6bMSERERkWm8u5ti/s//+T/4m7/5G5PnPDw8hCpnKpWKW0NNUR29uncHvaazb+CNirxz5szBxo0bsWbNGly5cgWlpaUYGBgAAPT29iInJwdXrlwRJtNaW8+8ir5EREQjMVy7q4cE1YZFqDa4Yom4HculbXCVdAnn+/v7cfXqVVy9ehU+Pj7o7+/HyZMnkZWVBZ3O9Gu6uLggMTERO3fuxKZNmyCV8laaiGgqq6urw9mzZ4Wf3dzcsH37di5CHaOJ6OsSERGN19vaI0N3O3puFaC79jL671UDMOK5iTg/Pz+o1eoRF6hobW1Feno6Oju/nVzj5uaGnTt3Yt68eWP8JERERFPbbOoDzqbPSkRERESm8cn/FPP48eMhPy9evBhqtRp79uyBWq3mZI1pwNHm7VtDf5eDtWzYc/b29khMTERMTAyuXr2K4uJiYTJtX18fcnNzceXKFURFRUGpVMLGZmZtF0pERPQu7253Rbg/OBf3dXPhIOrFpxFiNNyuFdpTAKivrwfw8r5r+fLluH79unB+/vz5SEhIwM6dO7F161ZWgScimiba2tpw5MgRYXcXBwcH7N27FzLZ8P0veruJ7OsSERGN1XfbI0PvC/TUXUVPzSX03b0OGAdN/t6rAhVpaWlYu3btiAtU1NbW4ujRo0P6kIGBgdi6dSsLGxAR0Yw2m/qAs+mzEhEREZFpnJE5xfzpn/4p7t27hxcvXuDgwYPYunUrH/JNMw42UgS7OaC65d3bfgS7OcDB5t3/DO3s7JCQkIDo6GhhMu2rKnn9/f3Iy8vD1atXoVQqERUVBVtb23F/DiIioulgNO3u4oXzIJO+QG1tLZqamhAWFob58+cL552dnbFlyxao1Wq8ePECERER2Lt3LxepTAE2NjaQSCSWToOIpokXL17g66+/FvpMcrkc7733Huzt7S2c2fQ2GX1dIiKi0XKwkcJ/ngTll86jp+YSepsqgEGDyVgrxwXYs20T9qaljrpAhdFoREFBAbKzs4VjIpEIUVFRiI+PZ/+EiIhmvO/2ASViEfxd7GFvJUVXvx51bV0wDL5cuDrd+4Ds7xIRERER7/CmGAcHB/zRH/0RACAsLGxGDsbp9AYMGIzo7B3A854BzLWVwcFGBplEBLl0+n9euUSMj1Te+CS98p2xH6t8IJeMrOoBANja2iI+Ph7R0dEoLCxEUVER+vv7AQA6nQ6XL19GUVERIiMjsXr1atjZ2Y31YxAR0QyhNwxCZxhEZ68eHb06ONrI4WAjhVwihnQUbdBU9a521zhoQF/zNXTXXMblpmKcedEhnMvPz4ePjw+USiX8/PyE49bW1rC2tsa9e/dw4sQJKJVKeHp6cvtvC3j592uE4yIPdPTo8LhLBwcb2Yz5+yWiiTcwMACNRiNstywSibBr1y64uLhYOLPpbzL7ukRERO/S3d2NzMxMpKen42LWGQzo+k3GLVjojKUhSjx1Dsf//q+/gy3hS0fdd9Dr9cjMzMS1a9eEYzKZDPHx8VAoFOwbEhHRrPCqD/iXx6uxP8oD7ynd0acz4FmPDvNs5bCSiZFefA9fFTZP+z4g+7tERERExEm0ZFbd/Xqcv9mGX1xuGLKaL9jNAb8b6w11kAvsrKb3n6VUIkZCoAv2R7njq8K7w8btj/JAfKDzmCaA2NjYYN26dVi9ejWKiopQWFiIvr4+AC8n0xYUFKC4uBirVq1CdHQ0Ky4REc1SPTo9LtS04fO8N9vdj1TeSAh0ga185rW7xkED+u9Xo7vmMnrqrmCwp8Pk79rY2MDPzw+rV69GUlISbty4gerq6iHbdN66dQu3bt3CwoULoVQqsXz5csjlo9vei8ZmNvz9EtHEMhqNOHbsGFpaWoRjGzZsGLJQgsbOHH1dIiKi1/X19SErKwtarRYnT55ET0+PyTix9RxYe4bBxj8KK+M24Hsqf6j8F2KOtXTU7VF3dzcyMjJw9+63bd2cOXOwdetW+Pr6juvzEBERTSdSiRjqQBdEec1HXt1j/ODXpW+M0X0Q7YnzP44bU5s7lbC/S0RERER86kxm09Ovx9+dqsHXxW92PqpbOvGH2krsU7rj0+TAaT+R1lYuxafJgVB6zcdnefVvdCo/VvkgPtB53BM/rK2toVKpEBUVheLiYly9ehW9vb0AXlZgunr1KkpKSoTJtHPmzBnX+xER0fTRo9Pjp6drTA76Vbd04pP0SuyP8sCnycum/UREW7kUf560DI6djfj5v/0a98tzYeh6ZjLWysoKa9asQXJyMg4cOIAFCxYI57y9vbFx40aUlJSgpKREqGIIAI8fP0ZmZiYuXLiA8PBwKBQKODk5TfZHm7Vm098vEU2c7Oxs1NTUCD9HRkZCqVRaMKOZx1x9XSIimr10Oh3Onz8PrVaL48eP48WLFybjrGztIV6yHLa+StgGrIFYbg0AqH3ch58cvi70F0bj0aNHSE9PR3t7u3DM1dUVKSkpWLhw4Zg/ExER0XRlBPDPObeHHaMba5s7FbG/S0RERDS78S6PzEKnN+DczTaTE2hf95uiu1B4zkPSclfIpRIzZTc5bOVSJIW4Ij7QGc+7+9HZM4C59laTsgWxlZUVYmNjoVAoUFJSgqtXrwqVGfR6PQoLC1FSUoKVK1ciJiYGDg4OE/beREQ09egNg7hQ0/bWVfMA8FVhM5Re85AU4jotV88bjUaUl5dDq9VCq9UOqRT0OplMhtWrV2Pjxo04ePAg3Nzchn3NV5NsY2JiUFdXh4KCAty7d08439fXh6tXr6KwsBABAQFQKBTw9PTkdp4TaLb8/RLRxKqoqEBBQYHws6+vLzZu3GjBjGYuc/Z1iYhodtDr9bh48SI0Gg2OHj2K58+fm4yzs7ODau1aeIbH4WSXF8RWtsO+5mj7C7dv38bhw4eh0+mEY/7+/ti2bRtsbYd/HyIioplqNo7Rsb9LRERENHtxEi2ZxYDBiC8uNYwo9ovLDVAHuWAmLOSTSsQQwYiOh82QSCRY6OoLiWTyJge/mvijUChQWlqKK1euoLu7GwBgMBhQXFyMsrIyhIeHY82aNXB0dJy0XIiIyHJ0hkF8dnFk7e5nefXTagsqo9GIqqoqYeLsnTt3TMaJxWIolUokJibiww8/hIeHx6jeRyQSISAgAAEBAXj8+DEKCgpw8+ZNDAwMCHnU1taitrYWCxcuhFKpxIoVKyCTycb9GWe7mfz3S0STo7GxEZmZmcLPzs7O2LVrF8RiXhsmi7n7ukRENPMMDg4iPz8fWq0Whw8fxqNHj0zG2djYIC4uDps3b8a+fftgZTcHu/71KsQDnSbjXzeS/oLRaERRURHOnTsHo9EoHFcoFFCr1ZBKZ8AgNRER0RjM1jE69neJiIiIZieOAJFZdPYO4ObDdw9sAi+3/+joG4Ct1cz58+zt7TXr+8nlckRHRyMyMhJlZWUoKChAV1cXgJeTaUtLS1FeXo6wsDDExsZyO2oiohmms1c/qna3s1c/5behunXrljBx9ubNmyZjRCIRIiIisGLFCmzZsgVbt26dkAHOhQsXYvv27di4cSNKS0tRUlKCzs5v//s+fvwYmZmZ+P/Zu/e4KMv8/+PvYYajHEwTEBVUPICCpiJ4AvKcWnlI08rsnFab+d22tuywbbur1Xbaalsr29qtTbEyLVfzkIkCCp7wBGJ5VhTNA8jJYYb5/cHPWUlQUGBgeD0fjx6PvO9rZj7DNTOf+77uz31dq1atUs+ePdW7d29y6zVwxs8vgNpz6tQpLViwQKWlpZLKZqi744475O7u7uDIGoe6PtcFADRsFwpWExIStGDBAmVnZ1fYzt3dXf3799eIESM0ZcoU+fv72/cdzy2usfMFq9WqpUuXasuWLfZtJpNJgwYNUp8+fVhxBADQqDX2MTrOdwEAABoX5zmSRb12prCkWu3PFpaopZ9nLUXTeLi6uqpPnz7q1auXtm7dqqSkJJ07d05S2WwPW7ZsUXp6urp166bY2Fg1a9bMwREDAGpCbpH5yo0ukldcokA/j1qK5urt37/fXjibnp5eabvu3btr2LBhuueeexQWFnbZttfCw8NDAwYMUP/+/ZWVlaWUlBQdPnzYvr+4uFgpKSlav369OnfurOjoaLVt25YLr9XkLJ9fALWvsLBQX3zxhYqLiyWVFb3ccccd3MgAAEA9YrPZlJ6ervnz52vBggU6cOBAhe1MJpP69u2r4cOH695771WrVq0qbFdT5wtFRUWXxNOkSRPdcsst6ty5c7VeAwAAZ8QYHQAAABoTimhRJ67zqt7Sxk2r2R6X5+rqqujoaPXs2dNeTHthBr3S0lKlp6dr27Zt9mLa5s2bOzhiAMC18PN0q1Z7X4/6k3ePHDmiL7/8UvPnz1daWlql7bp06aJhw4bp7rvvVo8ePeyFqlartdZjNBgMCgsLU1hYmE6ePKnk5GTt2rVLFotFUtlF4t27d2v37t1q0aKFYmJi1K1bN7m61p+/c33WkD+/AOqOxWLRggULdPr0afu2MWPGVFpwAwAA6tauXbs0f/58JSQk6KeffqqwjdFoVO/evTVs2DDdd999atu27RWftybOF3755RfNmzev3HGEv7+/xo0bp4CAgGo9PwAAzooxOgAAADQmFNGiTvh6uqprkK92ZV952Y+uQb5Od6Ll6elZI8tJXyuTyaTevXurZ8+eSk9PV1JSks6ePSuprOBn27Zt2r59uyIjIxUbG6vrr7/esQEDAK6Kr6epennX07GHhDk5Ofrqq680f/58JSUlVdquU6dOT3BBJgABAABJREFUGjp0qCZPnqyYmJhKZ3ht2rRpnRWstmjRQmPGjNFNN92kjRs3auPGjfZZ3yXp5MmTWrJkiVatWqWePXuqd+/ezJB4Bb/+/BpdDOoU4C1vd5Pyz1u0Jydf1lKbpPrx+QVQ92w2m5YsWaKDBw/atw0aNEhdu3Z1YFQAAOCnn35SQkKC5s+fr127dlXYxmAwqGfPnho6dKjuvffeas/6eq3nu/v27dOXX35pn8lekkJDQzV27Fg1adKkWrEAAHBBfbkOWJMa2hgzAAAAcC04mkWdcDUa9FBse81ISL9i24dj28vV6BzLHluspTJbbfJrGaLcQrNO5pvl6+kqN6OLTEYXh8VlNBrVq1cv3XDDDdq+fbvWrVunM2fOSCq7IL19+3Zt375dERERio2Nlb+/v8NiBQBUn5vRRVPj22v6vPQrtp0WHyo3B+SkU6dOaeHChUpISNCPP/6o0tLSCtu1bdtWw4YN0x133KG4uDi5uFQeq9liVYnVJq/mQTpTaNaJc2V519VokJupdgexPTw8FBsbq/79+2vPnj1KTk7WkSNH7PuLi4uVkpKi9evXKywsTNHR0QoJCam0ELgxu/D5fWHRLk3uE6I7Y4JVbLbqdKFZzbzc5O7qonlph/X5hoMO+/wCcKykpCRt27bN/u/u3btrwIABDozof8rOAUuVV2RRbpFZfp5u8vU0OfwcEACA2nLgwAEtWLBACQkJ2rJlS6XtunXrpmHDhmnKlCmKjIy86te7lvPdTZs2aenSpbLZbPZtUVFRGj58uEwmLpUAAKqvvl4HrAkNYYwZAAAAqCmMDKFOuJmMGtolQHdGB+uLtEOVtrsrJlhDugTUeqFLXSg0W7QqM0cfJO4rd5dm1yBfTY1vryHhAfJyc+xX0Gg0qkePHurevbt27NihtWvXllvGbOfOndq5c6e6dOmiuLg4ljMDgAbCZHTRkPAATe4TrM83VJ53J/cJ0eBw/zob0M3NzdWiRYuUkJCglStXymKxVNiuVatWGjZsmCZOnKghQ4ZUaRaHgvMWrczI0UfrLs27D8W219AuAWriXvt518XFRWFhYQoLC9OJEyeUnJysjIwM+3u12WzKzMxUZmam/P39FRMTo8jIyDqbObchMBldNDQ8QH3aNVfinpN6+N+bLunTe/u11cr/i5OPh6nBX5AAUD27du3S6tWr7f8OCQnRLbfcUi9uSmgI54AAANSEo0eP6ssvv1RCQoI2bNhQabsuXbrYVxPp1atXjeTrqznfLS0t1fLly5WWlmbfbzQadeONN6p///714jgCANDwOPs5YH0dYwYAAABqQ8M9ckeD08TdpOdGhSumXTN9WEGBy8Ox7TWkjgpcaluh2aJZSzMrPKnclZ2n6fPSNblPiGaODKsXJ9AuLi7q3r27IiMjtWvXLq1du1a//PKLfX9GRoYyMjIUFhamuLg4tWzZ0oHRAgCqwsvNpJkjwxXTrrnmJO69JO9Oiw/V4HD/Ws9DBQUF+u677zR//nwtW7ZMZrO5wnYBAQEaNmyYbrvtNo0aNapaswAVnrfoL//NrPBGnV3ZeZqRkK67YoI1c2R4nR5n+Pv7a+zYsRoxYoQ2btyojRs36ty5c/b9J06c0HfffaeVK1eqV69e6t27t/z8/OosvvrMJumd1T9Veiz11Ffb7cdSABqPI0eOaNGiRfZ/N2vWTLfffnu9WDKzoZ0DAgBQXSdOnNDXX3+t+fPna926deVmc71Yhw4dNGzYMN15553q169frRSoGiRNH9RRN7Rpqk+SD1xyvntf/7aK69hCUtmqIF999ZX27t1rb+Pl5aWRI0eqa9euNR4bAKBxaCzngPVljBkAAACobRzRok41cTdpRGSghnYJUG5xic4Wlqipl6t8PepmqeW6YLGWalVmzmXvypSkzzccVEy7ZhoREVhv7s50cXFRZGSkunbtqoyMDK1du1YnT56079+9e7d2796tTp06KT4+XkFBQQ6MFgBwJV5uJo2ICNTgcH/lFVmUV1wiXw/XWl9WuqioSMuWLVNCQoK+++47FRUVVdiuefPmGjJkiG677Tbdeuutcnd3r/ZrmS1WrcjIuexM95L0n9RDim7bTCMiA+v8eMPDw0OxsbHq37+/9uzZo+TkZB05csS+v7i4WMnJyUpJSVFYWJiio6MVEhLSaGdDasjHUgBqz9mzZzV//nz7zN4eHh6688475eXl5eDI+N0CADiv06dP65tvvlFCQoJ++OEHlZaWVtguJCTEvprIwIED5eJSe3nObLFq+a4c/eHbXborJlgfTolSsdmqM4VmXeflJndXF32Rekh/WpKp5wa30Yltq3XqoskCrr/+eo0dO5ZxTQDAVWts54COGmMGAAAA6hJFtKhzbiaj3EySl7tJLf08HR1OjTNbSzVnzb4qtZ2TuLdeLnHi4uKiiIgIde3aVZmZmVq7dq1ycnLs+/fs2aM9e/aoY8eOiouLU+vWrR0YLQDgckz/fyDTy82kQD+PWnsds9msFStWKCEhQYsWLVJ+fn6F7fz8/DR48GCNGTNG48ePl6fntR0LlFht+nBt1fLuh+v2aWiXADlqYgQXFxeFhYUpLCxMJ06cUFJSkjIzM+0FYTabTZmZmcrMzJS/v79iYmIUGRkpV1dXxwTsIM5wLAWgZp0/f17z5s1TQUGBpLLf04kTJ6p58+YOjqwMv1sAAGeSl5enxYsXKyEhQStWrFBJSUmF7Vq1aqWhQ4dqwoQJGjZsWLVWE7kWF84Bc4tK9P6avZqTuFedA33k7W5S/nmLso6fU6lNCnA5p+2rN8nV9r/427Vrp7Fjx8rHx6dOYgUAOKfGeA5YV2PMAAAAgKNQRAvUsLwiizKO5V25ocqWdMkrstTbZU4MBoO6dOmi8PBwZWVlKTExUcePH7fv/+mnn/TTTz8pNDRU8fHxatOmjQOjBQDUNYvFoh9//FHz58/XwoULdfbs2QrbeXt7a+DAgbrllls0adKkGr1gmVdUUq28m1tcIi93x+ddf39/jRs3TsXFxUpLS9OmTZt07tw5+/4TJ07ou+++08qVK9WrVy/17t1bfn5+Doy47jjTsRSAa1daWqqvvvpKJ06csG+7+eab1bZtW8cF9Sv8bgEAGrqCggItWbJECQkJWrp0qc6fP19hO39/fw0dOlS33Xabbr75Zofc8Pfrc8BSm5R57Fy5Nh2Mv6if60EZbTb7th49emjEiBGN7iZFAEDN4xwQAAAAcD4csQM1LLfIXK32ecUl9f6uTYPBoLCwMHXu3Fl79uzR2rVrlZ2dbd+/d+9e7d27V+3atVN8fLxCQkIcGC0AoDZZrVYlJSVp/vz5+vrrr3Xy5MkK23l5eSk+Pl6jRo3SXXfdpaZNm9ZKPGcKK54VqTJnC0vq1Uz4Hh4eiouL04ABA7R7926lpKTo6NGj9v3FxcVKTk5WSkqKwsLCFBMTo+DgYBkMBgdGXbuc8VgKwNX7/vvv9fPPP9v/3b9/f/Xo0cOBEV2K3y0AQENUXFys77//XvPnz9d3332nwsLCCts1a9ZMQ4YM0dixYzV27Fi5u7vXcaTlXe4c0CCbepmOKNL1fytqubi4KD4+XrGxsU59HgUAqDucAwIAAADOp8EW0U6fPl3Lly/X7NmzNW7cuEv2p6Sk6KOPPtLu3btVXFys9u3ba9KkSRo/fjyDZahVfp5u1Wrv69FwZj8wGAzq3LmzOnXqpJ9//lmJiYnlCn3279+v/fv3KyQkRPHx8Wrbti3fNwBwAjabTRs2bND8+fP15Zdf6tixYxW2c3d3V2xsrEaMGKEpU6bo+uuvr/XYrvOqXh5tWs32dcXFxUVdunRRly5ddOLECSUlJSkzM1MWi0VSWR9kZmYqMzNTAQEBiomJUUREhFPOouTMx1IAqic1NVUbN260/zs8PFyDBw92YEQV43cLANBQmM1mrVq1SgkJCVq0aJHy8iqeRc/Pz0+DBg3S6NGjdfvtt8vTs/7ciFjZOaBJVsW77VOwMde+7bzNqJuGjVBcTK+6Cg8A0AhwDggAAAA4nwZZRPvll19q+fLlle6fN2+eXnrpJbm6uiomJkaurq7asGGDnn/+eW3ZskWzZ8+uw2jR2Ph6mtQ1yFe7sq+8lEvXIF/5eja8r6HBYFDHjh3VoUMH7du3T4mJiTp8+LB9/8GDB/Xvf/9bwcHBiouLU/v27SmmBYAGxmazacuWLUpISFBCQoIOHTpUYTtXV1f17dtXN910k+699161bNmyTuP09XStXt5tAIPW/v7+GjdunIqKirRx40Zt2rRJ5879b3nSnJwcffvtt1q5cqV69eqlqKgo+fn5OTDimtUYjqUAXNmePXvKnfcHBQVp7Nix9fK8gt8tAEB95OnpKaPRKIvFoh9//FEJCQlauHChTp8+XWH7Jk2aaODAgbr55pt15513ysfHp44jrpqKzgGbGM5riNvPauZSZN+WW+quw35d9dwN3R0RZq240KcAAMfiHBAAAABwPg3uqH3//v2aNWvWZff/6U9/kre3tz777DN16dJFkpSdna177rlHCxcuVHx8vG666aa6ChmNjJvRRVPj22v6vPQrtp0WHyo3o0vtB1VLDAaDQkND1b59ex04cECJiYk6ePCgff+hQ4f0+eefq3Xr1oqPj1doaGi9vOgNAPifnTt3av78+UpISCi3fPbFjEajYmJiNHToUN13330KCQmp4yj/x9Vo0EOx7TUjIf2KbR+ObS9XY8PJQ56enoqLi9OAAQO0e/dupaSklJsBvqioSElJSUpOTlZ4eLiio6MVHBzc4HNtYzqWAlCxnJwcff3117LZbJIkX19f3XHHHfV29m1+twAA9YnFWiqz1abDJ8/q00/+qVVLv9MvJ09U2PbCOceoUaN01113qVmzZnUcbfX9+hywhSFfg91/lqfBYm9z3OqtRHM7zR7Ys0GdA1bmQp/6tQxRbqFZJ/PN8vV0lZvRRSaOKwCgznEOCAAAADifBlVEazab9eSTT9qXu83IyLikzdy5c2W1WvXAAw/YC2ilsllrXnzxRT344IOaO3cuRbSoNSaji4aEB2hyn2B9vqHiWfskaXKfEA0O93eKgU6DwaB27dqpXbt2OnDggNauXav9+/fb9x85ckT/+c9/FBQUpPj4eHXs2LHBF/gAgDPJysqyzzhb0fGVJLm4uKhXr14aOnSo7r33XnXs2LGOo6yYm8mooV0CdGd0sL5Iqzzv3hUTrCFdAuRmaniz9lw49u3SpYtycnKUnJyszMxMWSxlF4ltNpsyMjKUkZGhgIAAxcTEKDIyUiZTgzrUt2uMx1IA/ufcuXP64osvZDabJUlubm6688475e3t7eDIKsfvFgCgvig0W7QqM0evfLpY6//2uGQrvaSNu7u7+vXrp5EjR2rKlCny9/d3QKRX7+JzwA2bt6q/6wGZDDb7/p8tzbS+JEQTY9o12HPAi13o0w8S95Wb8bBrkK+mxrfXkPAAebk1zHM/AGioOAcEAAAAnE+DGl156623tGvXLr322mtavnx5hUUeP/74oyRp2LBhl+zr16+ffHx8tGPHDuXk5CggIKDWY0bj5OVm0syR4Ypp11xzEvdeMsA5LT5Ug8P9nXKAs23btmrbtq0OHTqktWvXau/evfZ92dnZmjdvngIDAxUfH6/OnTtTTAsADrJ//34tWLBA8+fPV3p6eqXtbrjhBg0dOlRTpkxRRERE3QVYDU3cTXpuVLhi2jXTh+suvbD4cGx7DekSoCbuDT/vBgQEaNy4cSoqKlJaWpo2bdqk/Px8+/6cnBx9++23WrlypXr16qWoqCj5+fk5MOKr05iPpYDGrKSkRPPnz1deXtl33mAwaPz48Q3i3J3fLQCAoxWaLZq1NFOfbzik/Kw95QtoXYxyDwpTn/jBmvvn36pDW8etJlITvNyMivfJkbvb/27iL7VJ2ywtVdIiTG/EhTrFOeDFffpru7LzNH1euib3CdHMkWEcYwBAHeMcEAAAAHAuDebIPSUlRZ988olGjRql0aNHa/ny5Ze0+eWXX3Tq1Cm5urqqffv2l+w3Go1q3769tm3bpqysrAZxIQ4Nl5ebSSMiAjU43F9nCs4rr7BE13m7N5qltoKDgzV58mQdOXJEiYmJ5ZYEP378uBISEhQQEKC4uDiFh4dTTAsAdeDo0aNasGCBEhISlJqaWmm7Ll26aNiwYbr77rvVo0ePBvEb3cTdpBGRgRraJUC5RSU6W1Sipl6u8vVwlavR0OBnH/o1T09PxcfHKzY2VpmZmUpJSVF2drZ9f1FRkZKSkpScnKzw8HDFxMSoTZs2DaIvL2jsx1JAY2Oz2fTNN9+U+y0bPnx4vZn5vCou/t3KK7Ior7hEvh6u8vU08bsFAKhVFmupVmXm2IstvcJiZT6xT5a8E3Jt0U4+kUNkahqoA5Iyc13V1lraYPOS2WzWokWLlJmZad/m5uaubn3iNK1nD6c5B/x1n1bm8w0HFdOumUZEBDbYPgWAhoqxKwAAAMB5NIgi2tOnT+vpp59WYGCgXnrppUrbnThxQpJ0/fXXy8Wl4hOTC8tTXWhbU2w2m6xW6zU/z8XPURPPB8cySDKpVLnHDspoNKq5f3u5uBgk1cznpSFo2bKlJk2apOzsbK1bt04//fSTfV9OTo6+/PJLtWjRQrGxsQoLC6v0u1uf8D11PvTptTMa6/biFHm36nJycvT1119rwYIFSkpKqrRdx44dNXToUN1xxx3q06ePvdiytPTS5T/rK6NBkqFUhaey1cTVVdd7tfz/edd5+1eSwsLCFBYWppycHKWkpGj37t3292uz2ZSRkaGMjAwFBAQoOjpaXbt2lcnUIE4DOJZyUo3ht7e2NcS8e6V+X716dblimKioKEVFRTW4z4hBkrvRoBbermrh7XrRHuf73eK77JzoV+dDn167hpB3zVab5qzZZ/+3i5uHmg2ZWmHbOYl7NTjcXwbZrilOR8jLy9OCBQt0/Phx+7amTZvqlltuUUhI+dl1G/rn/dd9ejkNuU8bM36fnQ99eu0aQs79NcaunBPfZ+dDnzof+vTa1XXeBYD6zmCz2er9yMojjzyiNWvW6NNPP1VMTIwk6dFHH9UPP/yg2bNna9y4cZKkTZs26a677lK7du30/fffV/hcTz75pJYsWaLnnntOU6ZMuebYMjMzVVhYeM3PAzQWubm5+umnn8oNdl/g7e2tjh07KigoqEHNlAdA6tWrV528Dnm3anJzc/Xjjz9qxYoV2rRpU6WFsEFBQYqJidHw4cPVs2fPBnEjA67MbDbrwIEDOnjwoM6fP3/JfldXV4WEhCgkJESenp4OiBDAtXK2vHv48GFt27bN/u8WLVqod+/e5CUAQL1Q3/Oup6en/FqGqP+ra6r8mOTf36jcYwdVVFRU7ddzlLNnz2rjxo3lznGaNm2qHj16qEmTJg6MrOY1lj4FgF+r7zkXAABnUld5FwAaino/BdV//vMfrV69Wg899JC9gLYyFy6wVaX4rgHUDgNOyc/PT1FRUcrLy9NPP/2kY8eO2ffl5+dr69at2rNnj72YlgvnAFA1+fn5WrNmjVasWKHU1NRK77z19/dXnz59NGTIEEVHRzeYGUlRdW5uburUqZM6duyoY8eOae/evcrNzbXvLykp0c8//6y9e/cqMDBQ7dq103XXXccNLAAc4pdfftH27dvt//bx8eHGDgAAqsFoNCq30Fytx+QVljSoWYeys7OVnp5e7gbRoKAgRUZGytXV9TKPbJgaQ58CAAAAAADUJ/W6auKnn37Sa6+9pq5du+qJJ564YvsLd5wXFxdX2ubCnepeXl41E+T/5+npqc6dO1/z81itVu3YsUOSFBkZycCXE6BPKxcXF6cTJ04oKSlJGRkZ9u0FBQVKT0/XwYMH1b9//3r3d6NPnQ992vCQd8sUFBRoyZIlWrBggZYtWyazueKLbG3atNGECRN06623KiYmxikvMl7Q0Pu0pvXo0UOSlJOTo5SUFO3evdteYG2z2XTs2DEdO3ZMgYGB6t27t7p27VrvCqvpU+dDnzY8NZF3K+r3U6dOadWqVfabXJs0aaJ77rlHTZs2vdaQUQf4Ljsn+tX50KcNz9Xk3ZP51Su4vM7bXS0CO1TrMY5gs9mUlJSkLVu22LcZDAb169dP8fHxTn3TjbP2Kf6H32fnQ582PIwxozL0qfOhT50PfQoAqGn16wr5r7z++usqLi6Wh4eHnn322XL7du3aJUlasGCBUlJS1Lt3bw0fPlxS2Uw2Nputwtm0Tpw4IalsFraaZDAYajwxG41Gkr2ToU8v1bJlS02YMEEnT57UunXrtHPnTvtF9DNnzmjJkiVKSkrSgAEDdMMNN9S7vx996nzo04ahMefdoqIiLVu2TAkJCVqyZEmlS48FBgZqwoQJmjRpkvr06ePUFxcr01D6tC4EBQVp/PjxKioqUmpqqjZv3qz8/Hz7/uPHj+u7777TDz/8oF69eikqKkq+vr4OjLhi9KnzoU8bhprOu0ajUefPn1dCQoL9JliTyaRJkyapefPmNfY6qDt8l50T/ep86NOG4Wryrq+nq7oG+WpXdt4V23YN8pWvp2u9/yxYLBZ9++239gvjUtmqG0OHDlVUVJQDI6sbztinqBy/z86HPm0YGvMYM6qOPnU+9KnzoU8BADWhXhfRXigK2bx5szZv3lxhm61bt2rr1q0ymUyaOHGiAgIClJOTo4MHD6pt27bl2lqtVu3bt0+SauTOQlwdi7VUZmup8oosyi0yy8/TTb6eJrkZXWQyNr4CH5Rp0aKFxo0bp/j4eK1bt07bt2+3F9OePXtWS5Ys0bp16+zFtPVtljwAqE1ms1krV67U/PnztXjxYp07d67Cds2bN9f48eM1adIkxcbGMmjgpK7lWMrT01M33nij4uLilJGRofXr1ys7O9u+v7CwUOvWrVNycrLCw8MVExOj1q1bV3hzGgBcLYvFogULFuj06dP2bWPGjFHr1q0dGBUAAA2Xm9FFU+Pba/q89Cu2nRYfKrd6Pgabn5+v+fPn6+jRo/Ztvr6+Gj16tNq3b+/AyOqOs/UpAAAAAABAfVavq9A+++yzSvc9+uij+uGHHzR79myNGzfOvj0+Pl4LFizQihUr9PDDD5d7THJyss6dO6ewsDAFBgbWWtyoXKHZolWZOfogcV+5u+i7Bvlqanx7DQkPkJdbvf5YopY1b95cY8aMUVxcnL2YtrS0VJKUm5ur//73v1q7dq0GDBignj17UkwLwGlZLBb9+OOPSkhI0MKFC3XmzJkK2/n5+WncuHGaOHGiBg0aJFdX1zqOFHWppo6lXFxcFBERoYiICB0/flxJSUnavXu3rFarJKm0tFS7du3Srl271LJlS8XExKhr167kXQDXzGazaenSpTp48KB926BBg9S1a1cHRgUAQMNmMrpoSHiAJvcJ1ucbDlXabnKfEA0O96/XExkcP35c8+bNU17e/853goKCNG7cuEY1Y70z9SkAAAAAAEB953RXwe+66y59/fXX+uCDDxQdHa0bbrhBkpSdna0//elPkqSpU6c6MMLGq9Bs0aylmRUO+u3KztP0eema3CdEM0eGUUgLNWvWTKNHj1ZcXJySkpKUnp5uL6Y9d+6cli1bpnXr1ql///7q1asXRWMAnILValVSUpISEhL01Vdf6eTJkxW28/b21ujRozVx4kQNGzZM7u7udRwpHKG2jqUCAwM1fvx4FRYWKi0tTZs3b1Z+fr59/7Fjx7Ro0SKtWLFCvXr1Uu/eveXj41Mj7wlA4/Pzzz8rKyvL/u/u3btrwIABDowIAADnYJA0fVBH3dCmqT5JPnDJTXf39W+ruI4tVJ/XmMjKytLXX3+tkpIS+7awsDCNHj1aHh4eDozMMbzcTJo5Mlwx7ZprTuLeS/p0WnyoBof7M5YOAAAAAABwjZxudCUsLEwzZszQG2+8oTvvvFPR0dHy8PBQamqqCgsLNWHCBI0cOdLRYTY6FmupVmXmXPaueUn6fMNBxbRrphERgdw9D0nSddddp1tuucVeTLt161b7LHn5+flavny5kpKS1K9fP0VFRcnNzc3BEQNA9dhsNqWmpmr+/Pn68ssvlZ2dXWE7Dw8P3XzzzZo0aZJGjhwpT0/POo4UjlQXx1JeXl668cYbFRcXp4yMDK1fv77c57GwsFDr1q1TcnKyunTpoujoaLVu3VoGQ32+DA+gPsnOzi5XQBsSEqJbbrmF3xEAAK6RxVqqlZk5emHRLt0VE6wPp0Sp2GzVmUKzrvNyk7uri75IPaQ/LcnUn8dE1LuxV5vNppSUFK1atcq+zWAwqE+fPho8eLCMRqMDo3MsLzeTRkQEanC4v84UnFdeYYmu83aXr6er3Iwu9aofAQAAAAAAGiqnK6KVpIcfflihoaH69NNPtX37dhkMBoWGhuqOO+7Q2LFjHR1eo2S2lmrOmn1VajsncS9LUOESfn5+GjVqlGJjY5WcnKzNmzfbi2kLCgq0cuVKJScnq1+/furduzfFtADqNZvNpq1bt2r+/PlasGBBuSWtL+bq6qoRI0Zo4sSJuuWWW5j9sxGry2MpFxcXRUREKCIiQsePH1dSUpJ2795tz7ulpaXauXOndu7cqZYtWyomJkZdu3aVyeSUpxYAasj58+e1bds2+7+bNWum22+/vVEXxQAAUFMunC/kFpXo/TV7NSdxrzoH+sjb3aT88xZlHT+nUltZ2/o29mqxWPTf//5X6enp9m2urq4aPHiwoqOjudlGksnoIoNsyj12UEajUS0CO3AMBQAAAAAAUIMa7JXu999//7L7Bw8erMGDB9dRNLiSvCKLMo7lXbmhypYjziuysAwVKuTr66sRI0ZowIAB9mJai8UiqWyGvFWrVik5OVl9+/ZVdHQ0S5wDqFd27typhIQEzZ8/Xz///HOFbYxGo4YOHaqJEydqzJgxatq0ad0GiXrJUcdSgYGBGj9+vAoLC5WamqrNmzeroKDAvv/YsWNatGiRVqxYoaioKEVFRVHsDaBCFovFXozv4eGhO++8U15eXg6OCgAA5/Dr84VSm5R57FyFbevT2GthYaESEhJ06ND/Vtzw8fHRLbfcoo4dOzowsvqpqKjI0SEAAAAAAAA4JcePlKFRyC0yV6t9XnGJAv08aikaOAMfHx/ddNNNGjBggFJSUrRp0yaVlJRIKhtQXr16tVJSUtSnTx/FxMTIw4PPEwDH2LNnjxISEpSQkKBdu3ZV2MZgMOjGG2/UpEmTNG7cOF1//fV1HCXqO0cfS3l5eWngwIGKj49XRkaGUlJSdOzYMfv+wsJCrV27VklJSerSpYtiYmLUqlUrZo0CYNekSRP16tVLv/zyi2666SY1b97c0SEBAOA0HH2+cDVOnjypL774QmfPnrVvCwgI0G233aYWLVo4LjAAAAAAAAA0OhTRok74ebpVq72vh2stRQJn4+3trWHDhql///5av3690tLS7MW0xcXFWrNmjdavX6+YmBj16dNHnp6eDo4YQGNw4MABe+Hs1q1bK23Xv39/TZo0SePHj1dgYGAdRoiGpr4cS7m4uCgiIkIRERE6duyYkpKSlJWVZZ9dsrS0VDt37tTOnTsVFBSkmJgYdenSRSYTpx0ApJYtW6ply5YUxgAAUMPqy/lCVf3888/66quvdP78efu2Tp06afTo0cxUDwAAAAAAgDrH1WzUCV9Pk7oG+WpX9pWXIe4a5CtfTz6aqJ4mTZpoyJAh6tevnzZs2KDU1FSZzWWzcJw/f15r167Vhg0b7MW0DMgDqGlHjx7VggULlJCQoNTU1Erb9e7dWxMnTtTtt9+uNm3a1GGEaMjq47FUy5YtNWHCBBUWFio1NVWbN29WQUGBfX92dra++eYbrVixQr169VJUVJR8fHxqPS4AAACgsamP5wsVsdlsSktL0/Lly2Wz2ezbo6OjNXToUG6+AwAAAAAAgEMwKoU64WZ00dT49po+L/2KbafFh8rN6FL7QcEpeXl5adCgQerbt69SU1O1YcMG+6wWZrNZ69atU2pqqnr37q2+ffuqSZMmDo4YQEN24sQJffXVV5o/f76SkpLKXQS8WLdu3TRp0iTdfvvtCg0NreMoGx9PT08ZjUZHh1Gj6vOxlJeXlwYOHKj4+HhlZGQoJSVFx44ds+8vKCjQ2rVrlZSUpK5duyo6OlqtW7eus/gAAAAAZ1efzxcusFqtWrZsmTZv3mzfZjKZNHDgQPXt21cGg6HOYwIAAAAAAAAkimhRR0xGFw0JD9DkPsH6fMOhSttN7hOiweH+MlFEi2vk6empG2+8UX369LEX0xYXF0sqK6ZNTk5WWlqaoqKi1K9fP3l7ezs4YgANxenTp7Vw4UIlJCRo9erVKi0trbBdWFiYJk2apIkTJyosLKyOo2ycLNZSma02+bUMUW6hWSfzzfL1dJWb0aXBH1s0hGMpFxcXRUREKCIiQseOHVNSUpKysrJktVolSaWlpdqxY4d27NihoKAgxcTEqEuXLsw2BQAAAFyj+n6+UFRUpC+//FL79++3b2vSpIluueUWde7cuU5jAQAAAAAAAH6NK9aoM15uJs0cGa6Yds01J3FvueXFugb5alp8qAaH+8vLjY8lao6Hh4fi4+PVp08fpaWlaf369SoqKpIklZSUaP369dq4caN69eql/v37s8w0gArl5uZq8eLFSkhI0IoVK2SxWCps1759e02cOFGTJk1SZGQkM+nUoUKzRasyc/RB4r5LjjGmxrfXkPCABn+M0ZCOpVq2bKkJEyaosLBQGzZs0JYtW1RQUGDfn52drW+++UYrVqxQVFSUoqKiuKEFAAAAuAb19Xzh1KlT+uKLL3T69Gn7Nn9/f40bN04BAQF1GgsAAAAAAABQEcdfYUej4uVm0oiIQA0O91dekUV5xSXy9XCVr6fJKWaJQ/3l7u6u2NhYRUdHa9OmTUpJSVFhYaEkyWKxKDU1VZs2bVLPnj01YMAA+fr6OjhiAI5WUFCg7777TgkJCVq2bJnOnz9fYbs2bdro9ttv18SJExUVFUXhrAMUmi2atTSzwhmXdmXnafq8dE3uE6KZI8PqRYHptWhox1JeXl4aNGiQbrzxRu3atUspKSk6fvy4fX9BQYESExO1bt06de3aVTExMWrVqpUDIwYAAAAarovPF84UnFdeYYmu83Z32Aod+/bt05dffmlfHUqSQkNDNXbsWDVp0qROYwEAAAAAAAAq07CrCNAgmf7/gK2Xm0mBfh6ODgeNjLu7u/r376/evXvbi2kvzIxntVq1ceNGbdmyRT169NCAAQPk5+fn4IgB1KXi4mItW7ZM8+fP15IlS+zF9r8WEBBgL5zt27evXFzqV+FiY2KxlmpVZs5llyyVpM83HFRMu2YaERFY7wpNq6shHku5uLgoMjJSkZGRys7OVnJysrKysmS1WiVJpaWl2rFjh3bs2KFWrVopJiZGXbp0kdFodHDkAAAAQMNiMrrIIJtyjx2U0WhUi8AODjmu3rRpk5YuXSqbzWbf1qtXL910000ymbgsAQAAAAAAgPqD0SoAjZKbm5v69eun3r17a/PmzUpOTlZ+fr6ksmLaTZs2acuWLbrhhhsUGxurpk2bOjZgALWmpKREqampevvtt7V48WKdO3euwnbNmzfXbbfdpkmTJikuLo7ivnrCbC3VnDX7qtR2TuJeDQ73b/BFtA1dUFCQJkyYoIKCAqWmpmrLli32G1ok6ejRo1q4cKGWL1+uqKgo9ejRw4HRAgAAAA1TUVGRQ163tLRUK1asUGpqqn2b0WjUjTfeqP79+7N6CwAAAAAAAOodimgBNGqurq7q06ePoqKitGXLFiUnJysvL09S2aD/li1blJ6erm7duik2NlbNmjVzcMQAatLChQv10EMPKTc3t8L9fn5+Gjt2rCZOnKjBgwfL1dW1jiPEleQVWZRxLK9KbXdl5ymvyCIvNw6B64MmTZpo0KBBio+PV0ZGhlJSUnT8+HH7/oKCAiUmJmrdunVq2bKl2rVr58BoAQAAAFxJcXGxvv76a/3888/2bV5eXho5cqS6du3qwMgAAAAAAACAylFBAACSTCaToqOj1bNnT6WnpyspKcleVFdaWqr09HRt27ZN3bp1U79+/RwcLYCa8sILL1xSQNukSRONHj1aEydO1PDhw+Xu7u6g6FAVuUXmarXPKy5RoJ9HLUWDq2E0GhUZGanIyEhlZ2crOTlZWVlZslqtksry8NGjR3X06FHt379fMTEx6tKlC7NBAwAAAPXImTNnNG/ePJ08edK+7frrr9fYsWMVFBTkwMgAAAAAAACAy6OIFgAuYjKZ7EtHb9u2TevWrdPZs2clSTabTdu2bdP27dsVFBSkDh06ODZYANds+PDhysrKkru7u0aNGqU77rhDI0eOlJeXl6NDQxX5ebpVq72vB7MJ12dBQUGaMGGCCgoKlJqaqi1btqigoMC+/+jRo1q4cKFWrFihqKgo9erVS97e3g6MGAAAAMDBgweVkJCgoqIi+7Z27dpp7Nix8vHxcWBkAAAAAAAAwJVRRAsAFTAajerZs6e6d++u7du3a926dTpz5oyksmLaCzPinTx5UvHx8fL393dwxACuxhtvvKFBgwapWbNm6tevHzNbNkC+niZ1DfLVruy8K7btGuQrX08OfxuCJk2aaNCgQYqPj9f27du1Zs0a5eX9r4/z8/O1Zs0arVu3Tl27dlVMTAyzWwEAAAAOkJ6eru+++06lpaX2bT169NCIESPk6spNjAAAAAAAAKj/qCIAgMswGo3q0aOHunfvrh07dmjdunU6deqUfX9GRoYyMjLUpUsXxcXFKSAgwIHRAqgug8Gg1q1bOzoMXAM3o4umxrfX9HnpV2w7LT5UbkaX2g+qllmspTJbS5VXZFFukVl+nm7y9TTJzegikxO8v4sZjUZ169ZNpaWlys3NVW5urnbt2iWr1SpJslqt2r59u7Zv367WrVsrOjpaXbp0oSAegMM0pt9oAEDjVlpaqh9++EEpKSn2bUajUXFxcYqNjZXBYKj1GMwWq0qsNuUVlehMYYmu83KVr6erXI0GuZk4JwAAAAAAAEDVUEQLAFXg4uKi7t27KzIyUjt27NCqVauUn59v33+hmDYsLExxcXFq2bKlA6MFgMbDZHTRkPAATe4TrM83HKq03eQ+IRoc7t/gC5gKzRatyszRB4n7ys2+2zXIV1Pj22tIeIC83JzzEN/Pz0/x8fEaNmyYNm/erE2bNuncuXP2/UeOHNGRI0e0YsUKRUVFqVevXvL29nZgxAAam8b8Gw0AaFzMZrMWLlyorKws+zZPT0/ddNNN6tatW53EUHDeopUZOfpo3aV596HY9hraJUBN3Mm7AAAAAAAAuDJGkQCgGlxcXBQREaGSkhIdO3ZMhw8f1smTJ+37d+/erd27d6tTp06Ki4tTq1atHBgtADQOXm4mzRwZrph2zTUnce8lF1CnxYdqcLh/gy9cKjRbNGtpZoXFwruy8zR9Xrom9wnRzJFhDf69Xk6TJk0UFxen/v37KzMzU2lpaTp8+LB9f35+vtasWaN169YpIiJC0dHRCgoKcmDEABoDfqMBAI1Fbm6u5s2bp5ycHPu2Zs2aacyYMWrTpk2dxFB43qK//DdTX6RVnHdnJKTrrphgzRwZTiEtAAAAAAAArogRJAC4CgaDQUFBQRoxYoT27NmjtWvXlrt4sGfPHu3Zs0cdOnRQfHw8y8UDQC3zcjNpRESgBof760zBeeUVlug6b3f5ero6xRLaFmupVmXmXHa2XUn6fMNBxbRrphERgQ3+PV+J0WhURESEIiIilJ2drbS0NO3cuVNWq1WSZLVatW3bNm3btk1t2rRRdHS0wsPDZTSyrCuAmsVvNACgsThy5Ijmz5+vgoIC+7bg4GCNHTtWTZs2rZMYzBarVmTkVFhAe7H/pB5SdNtmGhEZKDcT5wAAAAAAAACoHEW0AHANDAaDunTpovDwcGVlZWnt2rU6duyYff/PP/+sn3/+WaGhoYqLi1NwcLADowUA52Yyusggm3KPHZTRaFSLwA5OUzBptpZqzpp9VWo7J3GvBof7N6oCraCgII0ZM0ZDhw7V5s2btXHjRuXn59v3Hz58WIcPH5aPj4+ioqLUq1cvNWnSxIERA3Am/EYDABqDHTt2aPHixfab1iSpW7duGjVqlNzc3OosjhKrTR+urVre/XDdPg3tEiAmgQcAAAAAAMDlMHwEADXAYDAoLCxMnTt31k8//aTExERlZ2fb9+/du1d79+5Vu3btFB8fr5CQEAdGCwDOraioyNEh1Li8IosyjuVVqe2u7DzlFVka5XLhTZo0UVxcnPr376/MzEylpaXp8OHD9v3nzp3Tjz/+qLVr1yoiIkLR0dEKCgpyYMQAnAG/0QAAZ2az2bRmzRqtXbvWvs3FxUUDBgxQfHy8XFzq9saQvKKSauXd3OISebmTdwEAAAAAAFA5Ro8AoAYZDAZ16tRJHTt21N69e5WYmKgjR47Y9+/fv1/79+9XSEiI4uPj1bZtWxkMBgdGDABoCHKLzNVqn1dcokA/j1qKpv4zGo2KiIhQRESEsrOzlZaWpp07d9pnzbJardq2bZu2bdumNm3aKDo6WuHh4U4zczGAusVvNADAWZWUlGjRokXKyMiwb3N3d9ewYcPUs2dPh8R0prCkWu3PFpaopZ9nLUUDAAAAAAAAZ0ARLQDUAoPBoA4dOig0NFT79u1TYmJiuZnwDh48qH//+98KDg5WXFyc2rdvTzEtAKBSfp7VWx7V18O1liJpeIKCgjRmzBgNGTJEmzdv1qZNm5Sfn2/ff/jwYR0+fFg+Pj6KiopSr1691KRJEwdGDKCh4TcaAOCM8vLyNH/+fB07dsy+rWnTpho9erTatm3rsLiu86peHm1azfYAAAAAAABofCiiBYCr4OnpWaXZ6gwGg0JDQ9W+fXsdOHBAa9eu1YEDB+z7Dx06pM8//1ytW7dWXFycOnToQDEtAOASvp4mdQ3y1a7sKy9b2jXIV76eznWYX9W8ezne3t6Kj4/XgAEDlJmZqdTU1HKzxZ87d04//vij1q5dq8jISEVHR6tly5bXGjqAi9TEd7k+auy/0QAA55Odna358+fr3Llz9m2tW7fWuHHjdN111zkwMsnX07V6edeJbl5x1mMpAAAAAAAAR+PKDeqcxVoqs7VUeUUW5RaZ5efpJl9Pk9yMLjIZXRwdHnBZZZ9fm/xahii30KyT+Wb5erpe8fNrMBjUrl07tWvXTgcPHlRiYqL2799v33/kyBF98cUXCgoKUlxcnDp16kQxLQDAzs3ooqnx7TV9XvoV206LD5WbkxxTXW3evRyj0aiIiAhFRETo6NGjSktL086dO1VaWipJslqtSk9PV3p6utq0aaOYmBiFhYVxsRq4BrXxXa5PGutvNADAOWVkZOibb76RxWKxb+vatatuueUWubu7OzCyMq5Ggx6Kba8ZCelXbPtwbHu5Ghv++JqzH0sBAAAAAAA4GkW0qFOFZotWZebog8R95WYL6Brkq6nx7TUkPEBebnwsUT/V1Oc3JCREU6ZM0aFDh7R27Vrt3bvXvu/CTB+BgYGKj49X586dKaYFAMhkdNGQ8ABN7hOszzccqrTd5D4hGhzu7xQXUuviuLFVq1YaO3ashg4dqs2bN2vTpk3Kz8+37z98+LAOHz4sHx8f9e7dWz179lSTJk2u6TWBxqYxnAM2xt9oAIDzsdlsWrdunX788Uf7NoPBoH79+mnQoEFycakf+cvNZNTQLgG6MzpYX6RVnnfvignWkC4BcjM17JvhGsOxFAAAAAAAgKMxuoI6U2i2aNbSzAovKu7KztP0eema3CdEM0eGMfCHeqc2Pr/BwcGaPHmyjhw5orVr1+qnn36y7zt+/LgSEhIUEBCguLg4hYeHU0wLAI2cl5tJM0eGK6Zdc81J3HvJBdRp8aEaHO7vFMdRdX3c6O3trfj4eA0YMEAZGRlKS0vTkSNH7PvPnTun1atXKzExUZGRkYqOjlbLli2v+XUBZ9eYzgEb0280AMD5WCwWffvtt9qxY4d9m5ubm4YMGaLevXs7MLKKNXE36blR4Ypp10wfrru0uPTh2PYa0iVATdwbdt5tTMdSAAAAAAAAjsTICuqExVqqVZk5l52VR5I+33BQMe2aaUREILPzoN6o7c9v69atdeeddyo7O1tr165VVlaWfV9OTo6+/PJLtWjRQnFxcerSpUu9mfkDAFD3vNxMGhERqMHh/sorsiivuES+Hq7y9TQ5zVKejjxuNBqNioyMVGRkpI4ePaq0tDTt3LlTpaWlkiSr1ar09HSlp6crODhY0dHRCg8PJzcDFWiM54CN4TcaAOB88vPzlZCQUO4mMl9fX40ePVrt27d3YGSX18TdpBGRgRraJUC5xSU6W1iipl6u8vVwlavR0OBnoG2Mx1IAAAAAAACOQhEt6oTZWqo5a/ZVqe2cxL0scYl6pa4+v0FBQZo0aZKOHTumtWvXavfu3fZ9J0+e1Ndff63ExETFxcWpa9euFOwAQCNl+v+FWF5uJgX6eTg6nBpXX44bW7VqpbFjx2ro0KHatGmTNm3apIKCAvv+Q4cO6dChQ/L19VVUVJR69eolLy+vGo8DaKjqy3e5rjn7bzQAwLnk5ORo3rx5ys3NtW8LCgrS2LFjdf311zswsqpxMxnlZpK83E1q6efp6HBqVGM9lgIAAAAAAHAEimhRJ/KKLMo4lnflhipbiiqvyMISVKg36vrz27JlS02cOFE5OTlau3atMjIy7Pt++eUXLVy4UImJiYqNjVVkZCTFtAAAp1Lfjhu9vb114403KjY2Vrt27VJaWpqOHj1q35+Xl6fVq1crMTFRkZGRiomJUWBgYK3FAzQU9e27DAAAysvKytLXX3+tkpIS+7awsDDdeuut8vR0roLUhohjKQAAAAAAgLrDqArqRG6RuVrt84pLmLUH9YajPr8BAQGaMGGCTpw4oXXr1mnnzp32fadOndKiRYvsxbTdunWT0diwl6kDAECqv8eNRqNR3bp1U7du3XTkyBGlpaVp165dKi0tlSRZrValp6crPT1dwcHBiomJUVhYGDe7oNGqr99lAAAaO5vNpvXr12vlypX2bQaDQX369NHgwYMZX6onOJYCAAAAAACoOxTRok74ebpVq72vh2stRQJUn6M/v/7+/rrtttsUHx+vdevWaceOHbLZbJKkM2fO6Ntvv9XatWs1YMAA3XDDDVzsAAA0aI7Ou1XRunVrtW7dWkOHDtXmzZu1adMmFRQU2PcfOnRIhw4dkq+vr3r37q2ePXvKy8urzuMEHKkhfJcBAGhsrFarlixZovT0dPs2V1dXDR48WNHR0TIYDI4LDuVwLAUAAAAAAFB3mBYJdcLX06SuQb5Vats1yFe+ns5V3+3p6Slvb29Hh4GrVF8+v9dff73Gjh2rxx57TDfccEO5Cxtnz57VkiVL9M4772jjxo2yWCy1EgMAALWtvuTdqvDx8dGNN96oGTNmaOzYsQoKCiq3Py8vTz/88IPeeustffvttzp+/LiDIgXqXkP6LgMA0BgUFhbqs88+K1dA6+PjowkTJigmJoYC2nqGYykAAAAAAIC6QxEt6oSb0UVT49tXqe20+FC5GZ3jo2mxluq81Sa/liGyevvrZL5ZhWaLLNZSR4eGaqhvn9/mzZtr9OjR+s1vfqMePXqUWyY6Ly9PS5cu1TvvvKO0tDSKaQHIYi1Vodmi47nFyjqep+O5xeQi1Gv1Le9WhclkUrdu3fTQQw/pgQceUGRkZLn8bLFYtHXrVn3wwQf69NNPlZGRodLS/30H+Z7CGTXE7zIAAM7q5MmTmjt3rg4ePGjfFhAQoMmTJ6tjx44OjAyV4VgKAAAAAACg7nB7MuqEyeiiIeEBmtwnWJ9vOFRpu8l9QjQ43F8mJxj0KzRbtCozRx8k7tOu7Dz79q5Bvpoa315DwgPk5cZXsCGor5/fZs2a6dZbb1VcXJzWrVun9PR0e0HOuXPntGzZMq1bt079+/dXr1695OrKsm5AY0MuQkNUX/NuVbVu3VqtW7fW0KFDtWnTJm3evFkFBQX2/QcPHtTBgwfl6+ur3r17Kzyim5IPnuN7CqfT0L/LAAA4i71792rhwoU6f/68fVvHjh01ZswYeXl5OTAyXA7HUgAAAAAAAHWHq7GoM15uJs0cGa6Yds01J3HvJUUC0+JDNTjc3ymKBArNFs1amlnhAOeu7DxNn5euyX1CNHNkmFO838agPn9+mzZtqltuuUVxcXFKSkrS1q1bZbVaJUn5+flavny5kpKS1K9fP0VFRcnNza3OYwRQ98hFaMjqc96tKh8fHw0cOFCxsbHatWuX0tLSlJ2dbd+fl5enH374QatW/6g9Jc2UbfGX9L8iBr6ncAbO8F0GAKChstlsOnDggDIyMmSz2ezbo6OjNXToUJlM5N/6jmMpAAAAAACAusHoCuqUl5tJIyICNTjcX3lFFuUVl8jXw1W+nia5GV2c4o55i7VUqzJzLjtDgCR9vuGgYto104iIQKd4343BxZ/fMwXnlVdYouu83eXr6VovPr9+fn4aNWqUYmNjlZycrM2bN9uLaQsKCrRy5UolJyerb9++io6OppgWcGLkIjiD+p53q8pkMql79+7q1q2bjh49qtTUVGVkZNhnjzfYStXZ9Is6m37RMau3Mi0BOljaVJJBEt9TNHzO8l0GAKAhsdls2rlzpw4ePGjfZjKZNHDgQPXt21cGg8GB0aE6OJYCAAAAAACofRTRos6Z/v/gnpebSYF+Ho4Op8aZraWas2ZfldrOSdzLclsNjMnoIoNsyj12UEajUS0CO8hoNDo6rHJ8fX01YsQIDRgwQCkpKdq0aZMsFoskqbCwUD/88INSUlLsxbTu7u4OjhhATSMXwVk0hLxbVQaDQa1bt1br1q01bNgwrU9N09qUVLnaSuxtWhrz1dKYrz2W65Vc0ta+ne8pGjpn+i4DANAQ7N69u1wBbZMmTTRq1CiFh4c7MCpcLY6lAAAAAAAAahdFtEANyyuyKONY3pUbqmyZ3rwiC0tuNUBFRUWODuGKfHx8NHz4cPXv31/r16/Xxo0bVVJSVqhTVFSk1atXKyUlRX369FFMTIw8PJyvqB1orMhFcDYNIe9Wh4+Pj7r17q9pqwrVznhaXUwndL1LoX1/kEv57y/fUzgLZ/suAwBQX11cYNmiRQuNGzdOgYGBDowINYFjKQAAAAAAgNrBVVighuUWmavVPq+4xCln5EX94e3traFDh6pfv372YlqzuexzWlxcrDVr1mj9+vWKiYlRnz595Onp6eCIAVwrchFQ/+UWmVUqF+21Xq+91uZq4VKgcOMJXedSpO2WSwsc+J4CAACgqjp16qQePXqooKBAN998s3x8fBwdEgAAAAAAAFBvUUQL1DA/T7dqtff1cK2lSIDymjRpoiFDhqhfv37asGGD0tLSdP78eUnS+fPntXbtWm3YsEHR0dHq27evvLy8HBwxgKtFLgLqv/LfU4NOlnrrZKl3pe35ngIAAKA6WrVqJUmM7wAAAAAAAABX4OLoAABn4+tpUtcg3yq17RrkK19PatlRt7y8vDRo0CA98cQTio+Pl7u7u32f2WxWUlKS3n77ba1atUoFBQUOjBTA1SIXAfUf31MAAAAAAAAAAAAAcDyKaIEa5mZ00dT49lVqOy0+VG5GvoZwDE9PT914442aMWOGBg4cKA+P/y0RXVJSouTkZP3tb3/TihUrKKYFGhhyEVD/8T0FAAAAro3FWqpCs0XHc4uVdTxPx3OLVWi2yGItdXRoAAAAAAAAaECYzgioYSaji4aEB2hyn2B9vuFQpe0m9wnR4HB/mSiIgIN5eHgoLi5OMTExSktL0/r161VUVCSprJh2/fr1ysjI0COPPFJu1loA9Re5CKj/+J4CAAAAV6/QbNGqzBx9kLhPu7Lz7Nu7Bvlqanx7DQkPkJcblz8AAAAAAABwZYwiAbXAy82kmSPDFdOuueYk7r1kIHdafKgGh/szkIt6xd3dXbGxsYqJidHGjRuVkpKiwsJCSVJubq7y8/MpogUaEHIRUP/xPQUAAACqr9Bs0aylmRXejLYrO0/T56Vrcp8QzRwZxrE0AAAAAAAArogRJKCWeLmZNCIiUIPD/XWm4LzyCkt0nbe7fD1d5WZ0YTYx1Ftubm7q37+/evfurc2bN2v37t0KCQlR8+bNHR0agGq6OBflFVmUV1wiXw9X+XqayEVAPcH3FAAAAKg6i7VUqzJzLruagyR9vuGgYto104iIQI6pAQAAAAAAcFkU0QK1yGR0kUE25R47KKPRqBaBHWQ0Gh0dFlAlbm5u6tu3r/r27evoUABcA9P/L8LzcjMp0M/D0eEAqADfUwAAAKBqzNZSzVmzr0pt5yTu1eBwf4poAQAAAAAAcFkU0QJ1oKioyNEhAAAAAAAAAECDlldkUcaxvCq13ZWdp7wii7zcuAwCAAAAAACAynELNgAAAAAAAAAAqPdyi8zVap9XXFJLkQAAAAAAAMBZUEQLAAAAAAAAAADqPT9Pt2q19/VwraVIAAAAAAAA4CwoogUAAAAAAAAAwIl4enrK29vb0WHUOF9Pk7oG+VapbdcgX/l6mmo5IgAA4Iyc9VgKAAAAFaOIFgBQIYu1VIVmi47nFivreJ6O5xar0GyRxVrq6NAAAACAeoljaACAo1mspTpvtcmvZYis3v46mW92qlzkZnTR1Pj2VWo7LT5UbkYugQAAgKpz9mMpAAAAVIzbsAEAlyg0W7QqM0cfJO7Truw8+/auQb6aGt9eQ8ID5OVGCgEAAAAu4BgaAOBojSEXmYwuGhIeoMl9gvX5hkOVtpvcJ0SDw/1loogWAABUUWM4lgIAAEDFGEECAJRTaLZo1tJMTZ+XXm6QQJJ2Zedp+rx0zVq6W4Vmi4MiBAAAAOoXjqEBAI7WmHKRl5tJM0eG6907eqhrkG+5fV2DfPXuHT00c2QYRS4AAKDKGtOxFAAAAC7FKBIAwM5iLdWqzJzLzuQhSZ9vOKiYds00IiKQGT0AAADQqHEMDQBwtMaYi7zcTBoREajB4f7KK7Ior7hEvh6u8vU0yc3o0uDfHwAAqDuN8VgKAAAA5XF0BwCwM1tLNWfNviq1nZO4V2ZraS1HBAAAANRvHEMDABytseYik9FFXm4mBfp5qFOAjwL9POTlZqKoBQAAVEtjPZYCAADA/zCaBACwyyuyKONY3pUbqmz5mrwilq0BAABA48YxNADA0chFAAAAV49jKQAAAFBECwCwyy0yV6t9XnFJLUUCAAAANAwcQwMAHI1cBAAAcPU4lgIAAABFtAAAOz9Pt2q19/VwraVIAAAAgIaBY2gAgKORiwAAAK4ex1IAAACgiBYAYOfraVLXIN8qte0a5CtfT1MtRwQAAADUbxxDAwAcjVwEAABw9X59LGV0MSi8pY96t71O4S19ZHQx2PdxLAUAAOCcKKIFANi5GV00Nb59ldpOiw+Vm5E0AtR3FmupCs0WHc8tVtbxPB3PLVah2SKLtdTRoQEA4BQ4hgYAOBq5CAAA4OpdOJby83TVYwM7aO3TA/XeHT319E1heu+Onkp86kY9NrCD/DxdOZYCAABwUtwmBQCwMxldNCQ8QJP7BOvzDYcqbTe5T4gGh/vLxEABUK8Vmi1alZmjDxL3aVd2nn171yBfTY1vryHhAfJy43AQAIBrwTE0AMDRyEUAAABXz2R00dDwAPVp11yJe07q4X9vumQ8/d5+bbXy/+Lk42HiWAoAAMAJUTUBACjHy82kmSPDFdOuueYk7r1koGBafKgGh/tTeAfUc4Vmi2YtzazwAuqu7DxNn5euyX1CNHNkGN9nAACuEcfQAABHIxcBAABcPZukd1b/VOl4+lNfbbePpwMAAMD5MGIGALiEl5tJIyICNTjcX3lFFuUVl8jXw1W+nia5GV24yxao5yzWUq3KzLnsDESS9PmGg4pp10wjIgL5XgMAcI04hgYAONrFuehMwXnlFZboOm93+Xq6kosAAAAqwXg6AAAAKKIFAFTI9P8vrni5mRTo5+HocABUg9laqjlr9lWp7ZzEvSznCQBADeEYGgDgaCajiwyyKffYQRmNRrUI7CCj0ejosAAAAOotxtMBAADA0R0AAICTySuyKONY3pUbqmwpqrwiSy1HBAAAAACoS0VFRcrPz3d0GAAAAPUe4+kAAACgiBYAAMDJ5BaZq9U+r7ikliIBAAAAAAAAAKD+YjwdAAAAFNECAAA4GT9Pt2q19/VwraVIAAAAAAAAAACovxhPBwAAAEW0AAAATsbX06SuQb5Vats1yFe+nqZajggAAAAAAAAAgPqH8XQAAABQRAsAAOBk3Iwumhrfvkptp8WHys3IIWFDYrGWqtBs0fHcYmUdz9Px3GIVmi2yWEsdHRoAAAAA1BmzxaqC8xYdO1ukjOw8HTtbpILzFpktVkeHBgAAGhDG0wEAAMBtUgAAAE7GZHTRkPAATe4TrM83HKq03eQ+IRoc7i8Tg34NRqHZolWZOfogcZ92ZefZt3cN8tXU+PYaEh4gLzcO8QEAAAA4t4LzFq3MyNFH6y49N3ootr2GdglQE3fOjQAAwJUxng4AAABGkQAAAJyQl5tJM0eGK6Zdc81J3HvJRcVp8aEaHO5PwWUDUmi2aNbSzAoHcndl52n6vHRN7hOimSPD6FcAAAAATqvwvEV/+W+mvkir+NxoRkK67ooJ1syR4RTSAgCAKmE8HQAAoHHjKA8AAMBJebmZNCIiUIPD/ZVXZFFecYl8PVzl62mSm9GFO+YbEIu1VKsycy47E4Ikfb7hoGLaNdOIiED6FwAAAIDTMVusWpGRU2EB7cX+k3pI0W2baURkoNxMxjqKDgAANGQXj6efKTivvMISXeftLl9PV8bTAQAAnBxHegAAAE7MZHSRl5tJgX4e6hTgo0A/D3m5mRjwa2DM1lLNWbOvSm3nJO6V2VpayxEBAAAAQN0rsdr04dqqnRt9uG6fLFZbLUcEAACcicnoInejQbnHDsolP0ctvN0YTwcAAGgEONoDAAAA6rm8IosyjuVduaHKli/NK7LUckQAAAAAUPfyikqqdW6UW1xSyxEBAABnVFRUpPz8fEeHAQAAgDpCES0AAABQz+UWmavVPo8LxQAAAACc0JnC6p3rnK1mewAAAAAAADQ+JkcHUFXLli3Tf/7zH+3atUs2m01t2rTRyJEjdd9998nDw+OS9ikpKfroo4+0e/duFRcXq3379po0aZLGjx8vg8HggHcAAAAAXB0/T7dqtff1cK2lSAAAAADAca7zqt65TtNqtgcAAAAAAEDj0yBmon333Xc1Y8YMbdmyRREREerbt69Onz6tt99+W+PHj1dubm659vPmzdN9992njRs3qkuXLoqJidHevXv1/PPPa+bMmQ56FwAAAMDV8fU0qWuQb5Xadg3yla9ng7lXDgAAAACqzNfTtXrnRtxgCAAAAAAAgCuo90W0mzZt0nvvvSdfX18tXLhQn332mf7xj39o5cqVio2N1U8//aS3337b3n7//v3605/+JG9vby1YsEAff/yx5syZo6VLlyo4OFgLFy7U999/77g3BAAAAFSTm9FFU+PbV6nttPhQuRnr/WE+AAAAAFSbq9Ggh2Krdm70cGx7uRpZlQ4AAAAAAACXV++vrn/zzTeSpIceekhhYWH27V5eXpo+fbokac2aNfbtc+fOldVq1QMPPKAuXbrYtwcFBenFF1+0twEAAAAaCpPRRUPCAzS5T/Bl203uE6LB4f4yUUQLAAAAwAm5mYwa2iVAd0Zf/tzorphgDekSIDeTsY4iAwAAAAAAQENV79d5/eMf/6j7779fLVq0uGSf1WqVJBmN/xsI+/HHHyVJw4YNu6R9v3795OPjox07dignJ0cBAQG1FDUAAABQs7zcTJo5Mlwx7ZprTuJe7crOs+/rGuSrafGhGhzuLy+3en+IDwAAAABXrYm7Sc+NCldMu2b6cN2+S86NHo5tryFdAtTEnXMjAAAAAAAAXFm9H0UymUwKDQ29ZPuxY8f06quvSpLGjRsnSfrll1906tQpubq6qn37S5d0MhqNat++vbZt26asrCyKaAEAANCgeLmZNCIiUIPD/ZVXZFFecYl8PVzl62mSm9GFGWgBAAAANApN3E0aERmooV0ClFtcorOFJWrq5SpfD1e5Gg3MQAsAAAAAAIAqq/dFtL/2yiuvaNu2bdq2bZsMBoPuv/9+TZs2TZJ04sQJSdL1118vF5eKCwj8/f3Lta0pNpvNPjPutbj4OWri+eB49KnzoU+dD3167S6eFb4ukHdRmcbQpwZJ7kaDWni7qoW360V7auZ7Ud80hj5tbOjTa9cQ8y797nzoU+dEvzof+vTakXfrL6NBMpoM8vd2k7+3W7l9zva+G0ufNib0qfOhT69dQ8y5En3vjOhT50OfOh/69NrVdd4FgPrOYLPZbI4Oojp69+6tvLyy5Znc3Nw0fPhwPf300/L399emTZt01113qV27dvr+++8rfPyTTz6pJUuW6LnnntOUKVOuOZ7MzEwVFhZe8/MAANCQ9erVq05eh7wLAAB5FwCAukTeBQCgbpBzAQCoO3WVdwGgoWhw671+++232rZtm7788kv17NlT3333ne644w4VFhbaZ581GAxXfJ4GVjsMAAAAAAAAAAAAAAAAAACAGmRydADV1bJlS0lSt27d9NFHH+m2227Tnj17tGDBAvXt21eSVFxcXOnjz58/L0ny8vKq0bg8PT3VuXPna34eq9WqHTt2SJIiIyOZQt0J0KfOhz51PvRpw0PeRWXoU+dDnzof+rThqYm8S787H/rUOdGvzoc+bXjIu6gIfep86FPnQ582PIwxozL0qfOhT50PfQoAqGkNroj2Ym5ubhoxYoT27NmjjIwMjRkzRpL0yy+/yGazVTgj7YkTJyRJ/v7+NRqLwWCo8cRsNBpJ9k6GPnU+9KnzoU8bBvIuqoI+dT70qfOhTxuGms679LvzoU+dE/3qfOjThoG8iyuhT50Pfep86NOGgTFmVAV96nzoU+dDnwIAaoKLowO4knfeeUczZszQ8ePHK9zv5uYmSbJYLGratKkCAgJkNpt18ODBS9parVbt27dPkmrkzkIAAAAAAAAAAAAAAAAAAAA0TPW+iDY5OVnLli3Tf//73wr3JyYmSiqbol2S4uPjJUkrVqyo8LnOnTunsLAwBQYG1lLEAAAAAAAAAAAAAAAAAAAAqO/qfRHtXXfdJUl67733tH37dvv2kpISvf7660pLS1Pz5s1122232dsbjUZ98MEHSk9Pt7fPzs7Wn/70J0nS1KlT6+4NAAAAAAAAAAAAAAAAAAAAoN4xOTqAK7n11lu1adMmJSQkaOLEierRo4d8fX2VmZmp48ePq2nTpvrHP/4hX19fSVJYWJhmzJihN954Q3feeaeio6Pl4eGh1NRUFRYWasKECRo5cqSD3xUAAAAAAAAAAAAAAAAAAAAcqd4X0UrSyy+/rD59+mjevHnatWuXzGazgoKCdM899+iBBx5QQEBAufYPP/ywQkND9emnn2r79u0yGAwKDQ3VHXfcobFjxzroXQAAAAAAAAAAAAAAAAAAAKC+MNhsNpujg2jI0tPTZbVaZTAY5Onpec3PZ7PZVFRUJEny9PSUwWC45ueEY9Gnzoc+dT70ac3w8PBQu3btavU1yLu4EvrU+dCnzoc+rRkNLe/S786HPnVO9KvzoU9rBnkXjkafOh/61PnQpzWjoeVcib53RvSp86FPnQ99WjPqIu8CQEPRIGairc9KS0sllSXpwsLCGn3uC0kfzoM+dT70qfOhT+s38i6qgz51PvSp86FP67fayrv0u/OhT50T/ep86NP6jbyLqqJPnQ996nzo0/qNMWZUB33qfOhT50OfAgBqAkW018jV1VUlJSVycXGRu7u7o8MBAMBhPDw8av01yLsAAJQh7wIAUHfIuwAA1A1yLgAAdacu8i4ANBQGm81mc3QQAAAAAAAAAAAAAAAAAAAAQF1ycXQAAAAAAAAAAAAAAAAAAAAAQF2jiBYAAAAAAAAAAAAAAAAAAACNDkW0AAAAAAAAAAAAAAAAAAAAaHQoogUAAAAAAAAAAAAAAAAAAECjQxEtAAAAAAAAAAAAAAAAAAAAGh2KaAEAAAAAAAAAAAAAAAAAANDoUEQLAAAAAAAAAAAAAAAAAACARociWgAAAAAAAAAAAAAAAAAAADQ6FNECAAAAAAAAAAAAAAAAAACg0aGIFgAAAAAAAAAAAAAAAAAAAI0ORbQAAAAAAAAAAAAAAAAAAABodCiiBQAAAAAAAAAAAAAAAAAAQKNDES0AAAAAAAAAAAAAAAAAAAAaHYpoAQAAAAAAAAAAAAAAAAAA0OhQRAsAAAAAAAAAAAAAAAAAAIBGhyJaAAAAAAAAAAAAAAAAAAAANDoU0QIAAAAAAAAAAAAAAAAAAKDRoYgWAAAAAAAAAAAAAAAAAAAAjQ5FtAAAAAAAAAAAAAAAAAAA1GM2m83RIThUY3//qD0U0QIAAAAAAAAAAAAAAAAAUIMGDRqkzp07KzU19Zqfa/Xq1XrggQdqIKqGx2az6ZtvvtHvfvc7R4dyTTp37qzOnTvr9OnTjg4Fv0IRLQAAAAAAAAAAAAAAAAAA9dDu3bv1yCOP6MCBA44OxSFWr16tZ555RidOnHB0KHBSFNECAAAAAAAAAAAAAAAAAFAP2Ww2R4fgUI39/aP2UUQLAAAAAAAAAAAAAAAAAACARociWgAAAAAAAAAAAAAAAAAAallqaqo6d+6s5557TseOHdMzzzyjAQMGKCIiQsOGDdPbb7+twsJCe/tnnnlGY8aMkSQdPXpUnTt31qBBg8o95+nTp/Xqq69q+PDhioyMVO/evXX//fcrMTHxktdfuHChOnfurPfff19z585V37591b17d40fP15ms9nebunSpbr33nvVp08f9ejRQ7feeqs+/PDDcrFdy+u/9dZb2rFjh+6991716NFDMTExeuCBB7R+/fpy7e+++2499thjkqS0tDR17txZd999t33/vn379Pvf/17Dhw9Xt27dFB0drbvvvltff/11tWewXbVqlR544AFFR0crIiJCgwYN0h/+8AcdOXLkkrZ33323OnfurOPHj+vrr7/WbbfdphtuuEFRUVF68MEHtXHjxiu+3rhx49S5c2d9++23Fe5fsWKFOnfurMcff7xa7wPVZ3J0AAAAAAAAAAAAAAAAAAAANBaHDh3S2LFjZbFY1L17d0llBbb/+Mc/tG3bNn3yySeSpB49euj06dNKTEyUl5eXBg8erGbNmtmfZ8+ePbr//vt18uRJBQQEqH///iosLFRaWpqSk5M1bdo0/d///d8lr//dd99p//79iomJkcFgUNOmTeXm5iabzabf/e53WrJkiVxdXRUVFSUvLy9t2bJFb7zxhlavXq1//etfcnd3v6bX37lzpz755BN5enqqf//++uWXX5SUlKTk5GS9+OKLuvPOOyVJ/fr1k1RWQNu8eXP169dPoaGhksoKaCdMmKD8/Hx16tRJN954o/Ly8rRx40alpaVp165devHFF6vUHy+++KISEhJkNBrVo0cPNW/eXJmZmZo/f76WLFmi999/XzExMZc8btasWVq+fLk6d+6s2NhYZWZmat26dVq/fr0++eQTRUdHV/qaEyZM0K5du7Rw4ULdeuutl+z/+uuvJUnjx4+v0nvA1aOIFgAAAAAAAAAAAAAAAABwzQoLC8vNaNpQuLm5ycvLq85eLy0tTf369dMbb7xhL4rdvn277rzzTqWkpGjbtm3q3r27Jk6cqG7duikxMVHXXXedXn/9dftzWCwWPf744zp58qQefPBBzZgxQ66urpKkn3/+WQ888IDmzJmj7t27XzJ77b59+/TSSy/pjjvukCSVlpZKkr1otHXr1vr444/Vtm1bSVJ+fr4eeOABbd26VZ988ommTZt2Ta+flJSkPn366L333pOPj48kaeXKlXriiSc0a9Ys9evXT23bttUjjzyijh07Ki0tTaGhoeXe/8cff6z8/HxNnTpVv/3tb+3bMzMzNWnSJM2bN0/Tpk2Tv7//Zfti/vz5SkhI0PXXX68PP/xQXbt2tf9NPvroI7355pt6/PHH9f3335crYJak1atX6+2339aIESMkSVarVTNmzNCKFSv04YcfXraI9pZbbtFrr72m1NRUZWdnKygoyL4vJydH69atU2BgoGJjYy8bP66di6MDAAAAAAAAAAAAAAAAAAA0bDNmzJCPj4+uu+66Bvefj4+PZsyYUad/r5dffrlcUWa3bt3Us2dPSdLu3buv+PiVK1fqwIED6tGjh373u9/ZC1glqUOHDnrmmWckSR999NElj/Xy8tLtt99u/7eLS1kZ4WeffSZJ+sMf/mAvoJUkb29vzZw5U8HBwTp58uQ1v76Hh4fefPNNewGtJA0dOlQTJkxQSUmJEhISrvj+T5w4IUkKDAwstz08PFyzZs3Sa6+9Jjc3tys+z8cffyxJev755+0FtFLZ32Tq1KkaOHCgcnNzNX/+/EseO2rUKHsBrSQZjUZNmTJF0pX70NvbWyNGjFBpaakWLVpUbt+iRYtktVo1btw4e9+g9vAXBhqphQsXqnPnzoqLi6uTx7377rvq3Lmz/Q4WRysuLtbcuXM1YcIE9ezZUxERERo4cKCefvrpyyaxu+++W507d77sf5mZmRU+dv369frNb36jAQMGKCIiQgMGDNDvfvc77d27t8px5+fna+DAgercubNSU1Mrbbd9+3Y9+eSTuvHGGxUREaFevXpp4sSJ+ve//90g7/gCgIassedcqWw5mhdffFGDBw9WZGSkevfurQceeECJiYmVPubs2bP629/+ptGjR6tHjx6KjIzU0KFD9dJLL+nw4cOVPu7MmTN67bXXNHz4cEVGRqpnz56aNGmSEhIS7HfQVmTv3r16/vnnNWTIEEVGRqpHjx4aO3as3n//feXn51f5vf72t79V586ddfDgwSo/BgBQc8i7V5d3i4qK9P777+uWW25R9+7ddcMNN2js2LH66KOPqnUOabFYdNttt6lz585auHBhlR9X1XPdn376SU899ZRiY2MVERGhPn36aOrUqVq/fn2VXwsAUHPIuw0j72ZlZel3v/udYmNjFRkZqWHDhunFF1/UgQMHLvv869ev17Rp0xQTE6OIiAgNGjRIL774ovbt21flGAEANaOx5txnnnnmitdlL/7v1652jPn48eOaNWuWRowYoe7du6t79+4aNWqU/vrXv+rUqVOVPu5qcy7XdeFs3nvvvctej6nPSktL9d5779XZ67Vo0UJt2rS5ZPuFWVOLioqu+BwXxsX69u0rg8Fwyf64uDi5uLho27Ztlzxfp06dZDQay207ceKE9u7dK09PT/Xv3/+S5+vevbtWrlypF1544Zpfv2/fvmrevPkljxk2bJgkacOGDZW+7wtiYmIkSbNnz9azzz6r77//Xrm5uZLKiltvueUWNW3a9LLPcfz4cR06dEju7u4aMmRIhW1uvvnmSmO6UPR8ser04YVC5m+++abc9q+//loGg0G33XbbFZ8D187k6AAAoK798ssvuueee/Tzzz9LkgICAuTn56eDBw9q8eLFWrp0qf7yl79o9OjRlzw2KytLUtmBwa8PJi6oaHr/119/3X5nTYsWLdS+fXvt379f3333nVasWKF//OMfFR6A/Npf/vIXZWdnX7bNv/71L73yyisqLS2Vh4eH2rdvrzNnzig9PV3p6elasmSJ/vnPf8rb2/uKrwcAwLVatWqV/u///k9ms1ne3t7q0KGDDh8+rKSkJCUlJWn69Ol67LHHyj1m7969uu+++5STkyODwaBWrVrJw8NDBw8e1Lx58/Ttt9/qvffeU79+/co97ujRo5o8ebKys7NlMpnUtm1bFRYWauvWrdq6dat+/PFHvfvuu+XugpWkZcuW6emnn5bZbJarq6v9cZmZmcrIyNDixYv1r3/965K7WH9t3rx5+u9//1szfzgAAK7C1eTdvLw83X333dq9e7cMBoOCg4MlyZ4Hly9frk8//bRK55Bz5szRzp07qx13Vc51ExMT9fjjj+v8+fPy9PRUaGiojh8/rjVr1mjNmjX67W9/q6lTp1b7tQEAuFoNIe8uXrxYzz33nEpKSuTm5qaOHTvq9OnTSkhI0DfffKNXX31VI0eOvORx7733nt59911JUtOmTdWxY0cdPnxYCQkJWrRokf76179q+PDhVf1TAQBwVdq2bVthYdLFduzYoZKSEntOveBqx5g3bdqkRx55RHl5eTIajQoODlZpaan279+vn3/+WYsXL9bcuXMVFhZW7nFXm3O5rgtn9Jvf/EbvvvtugyykNRqN+s1vflNnr+fn51fhdpOprJzParVe8TmOHTsmSXr//ff1/vvvX7btiRMnFBISYv+3r6/vJW1ycnIklRWBVlYTU1Ov365duwrbtWzZslwsl3Pvvfdq3759Wrhwof0/FxcXde/eXcOGDdPtt99+xd/Qi2ez/fU1xAsuFDtfaHuxiv6OF/52Vfke3HDDDerUqZP27NmjTZs2KSoqSmlpaTp48KD69++v1q1bX/E5cO0oogVQLUOHDlX37t0rTRwNwdNPP62ff/5ZISEhev3119WtWzdJUkFBgV599VUlJCToueeeU3h4uDp16mR/XHZ2tnJzc+Xp6an58+dXebr0r776Sh999JFcXV318ssva+zYsTIYDDp79qx+//vfa82aNXrqqae0atWqCgtwL1izZs0VZ/LZvHmzZs+eLZvNpgcffFBPPPGEfWr6DRs26KmnntK2bdv04osv6s0336xS/AAAx3CGnLt3717NmDFDJSUluvvuu/Xkk0/K09NTFotF7733nv7xj3/o3XffVWxsrD0fWywWPf7448rJyVFkZKT++te/2k+iT506pRdeeEE//PCDpk+fruXLl5e7Q3XmzJnKzs5Wx44d9d5779mXmFm9erVmzJihH3/8UXPnztUjjzxif8zhw4ftBbRjxozR888/b182JjMzU08++aT9fVS0RMsFn376qV555ZWa/hMCAOpIY827kvTKK69o9+7d8vf31/vvv6/IyEhJ0pYtW/TYY49px44deuWVV/TnP//5sq+fmZmpOXPmVDvuqpzr5uXl6emnn9b58+c1fPhw/eUvf5GPj4+sVqv+/ve/6+9//7vefPNN9erVS1FRUdWOAQBQt8i7dZN3d+3aZS/mGThwoGbNmmVfJvZCoc9vf/tbBQYGlitQWr9+vb2A9qmnntJ9990no9Eos9ms119/Xf/617/01FNPqXv37le82RQA4FgNPedOmzZN06ZNq3T/N998oy1btsjLy6tcXrzaMea8vDw9/vjjysvLU2xsrGbNmmWfSfDCOPKFnL106VK5u7tLuvqcy3VdOKu3335bs2bNapAzKbu5uV22ZqOmVTRza3VdKNLs2bOnWrVqddm2v84HFdW8XCjcrWpsNf36kmSz2SSpSkW8JpNJs2bN0iOPPKJVq1YpKSlJW7ZssU+w8+mnn2revHmXje3Ce7jce74Q04Xf6YvVRD/efvvt+vOf/6xvvvlGUVFR9vHS8ePHX/Nzo2qqVgEGAP+fj4+PQkNDL7mbr6HIzMxUcnKyXFxc9MYbb5QbwGzSpIn++Mc/KioqSiUlJfrXv/5V7rG7d++WJHXo0KHKBbTnz5/XX//6V0llhT3jxo2zJ9CmTZvq9ddfV5MmTXTq1CmtXr260uc5e/asnn/+eXl6el729T7++GPZbDYNHDhQTz31VLkE3qdPH7366quSpP/+97/2O4IAAPVTQ8+5kvTqq6+qpKREI0aMKJfHTCaTZsyYod69e8tms+mrr76yP2bNmjXau3evvLy89O6775a7C7V58+Z66623FBISonPnzikhIcG+79ixY/YlVF5++WV7Aa0kDRo0SA8++KAklXstSfYlscLDwzVr1ix7Aa0khYeH691335XRaNTWrVu1adOmS97jiRMnNH36dPtgJwCgYWqseddsNttnUX/66afthTxS2cD37373O0nSd999d9kLH2azWU8//bSsVmuFA8mVqeq57o8//qizZ8/K19dXr776qj1fG41GTZ8+Xb1795ZUtsQZAKD+I+/WTd79xz/+oZKSEnXq1EnvvPOOvZhHkkaPHq377rtPNptNL7/8crnHzZ07V1LZcqUPPvig/cK1m5ubnn32WYWGhur8+fOXLDUKAKh/nCHnVmb//v32HPbcc88pNDTUvu9qx5gXLlyo06dPy9/fX2+//ba9gFYqm4Hw73//u/z8/HTkyBF9//339n1Xm3O5rgtn5uXlpaZNmza4/+qygLamXPitGjRokF5//fXL/hcUFHTF52vRooWksutflc2iOm/ePK1atUoWi+WaXv/48eMVPv+RI0ck6YpFuRdr06aN7rvvPn388cdKS0vTP//5T3Xo0EE5OTn68MMPL/vYgIAASWXXGktKSipsc+jQIUnS9ddfX+WYqmP06NHy8PDQqlWrVFRUpB9++EFNmzbVkCFDauX1cCmKaAE0KqmpqZKk4ODgcoOUFxgMBg0aNEhS2fIfF7tQRNuxY8cqv97q1at19uxZtW3bVhMnTrxkv4+Pj1544QU988wzlU5VL0l//OMfdfLkSf3f//3fZV/vwvu7+eabK9zft29fNWnSRJKuaolNAACq6uTJk0pKSpKLi4v9QuCvTZ8+XU8++aQGDhxo33ahELZnz5725Vou5u7urgEDBkgqn6svPtH+9VJakux5/9cn5Bdy54gRIyq8ozU0NFTt27eXdGnuXLlypYYPH67ly5fLz89PL774YoXvEwCA2na1effs2bMqLi6WdPn8WVxcrNOnT1f6+u+884727Nmju+++2z7QXhVVPde9kL+Dg4MrLLi9ECcXFQEAdaEh5F2r1ark5GRJ0pQpUyostr3nnnsklU08cWHsWyo7Hx80aJBuu+22Sx5jMBjsq7dlZ2dXGiMAALXt+eefV2Fhofr373/JLH1XO8Z8Yax44MCBFS793axZM/Xo0aPc464l53JdF0B1VDbbaXR0tCQpMTGxwv07d+7U8OHDNW3aNFksliu+TqtWrdSqVSsVFhbaf6cu9tNPP+mll17SCy+8IKPReE2vv379+gpvIFy+fLkkKTY29orxPvjgg4qJiSl3/c/V1VX9+/fXAw88IOnKY4YtW7ZUcHCwzp8/X+nkd0uWLJFUdpNDbfD19dXw4cN19uxZvf3228rLy9Po0aOrNWEBro3J0QEAqFhOTo4++ugjpaWl6ciRI7LZbGrZsqX69eune++9V61bt67wcatXr9aXX36pXbt26fTp02ratKmioqL04IMPKiIiosLHFBYW6p///KeWLl2qI0eOyNPTUxEREbr//vvVv3//cm0XLlyoZ599VgEBAVq7dm25faWlpfrmm2/05Zdf6ueff5ZUdnLy+OOPX9XfoHPnzlVu26pVq8vO5HrBoEGD5O/vf9llSy7MIvfru2ounNRUJ66UlBT761Y21fzYsWMv+xzLli3T0qVL1bt3b02ZMkWzZs2qsF1paaneeustHT9+vNLlKy+eIe/CNPwA0NiRc2sn527YsEFWq1URERGV/g2jo6PtJ9cX3H777erevbt9Ca2KVJSrL757NSMj45JcmJWVdUk7qWyWgiNHjqh79+5XfL1f587du3erqKhIt9xyi37/+9/r/PnzlT4HAKAMebd+5d3mzZvL3d1d58+fV0ZGxiU3jV7In+7u7pXm5vT0dP3zn/9U27Zt9dvf/larVq2qylur8rmuJPtFz4MHD6qwsPCSWUEuxFmd2SkAoDEg7zbevHvmzBkVFhZKUqV9dv3118vX11d5eXnatm2bvbD3scceq+Sdl50XZ2ZmSpJCQkIqbQcAjQ05t3ZybmWWLl2qTZs2ydXVVc8///wl+692jPmRRx7R8OHDLzvx0a8fd7U5l+u6AKrrQjFlfn6+SktL7asnjxw5Un/729+0ceNGvfHGG5o+fbq9HubEiRN69tlndeDAAUVHR8tkqlqZ4D333KNZs2bp5Zdf1j//+U/72Ny5c+f00ksvSSr7rTUYDNf0+qdOndIf/vAHvfzyy/bHLFmyRN988418fX11++2329u6u7tLknJzc8s9R/PmzXX27Fm98soreu211+x/J7PZrGXLlklSuRWqK3Pffffpj3/8o/70pz8pODhY4eHhksp+iz/88EMlJibKz89Po0ePrtLf8GrcfvvtWrx4sf79739LkiZMmFBrr4VLUUQL1EOHDh3SpEmTdOrUKXl5edlPrA4cOKDPPvtM33zzjT777DN16dLF/hir1apnn31WixcvllQ2xXqnTp10+PBhLVu2TCtXrtT777+v+Pj4cq9VXFysiRMnas+ePWrZsqXatWunAwcOKCkpScnJyZo9e/YVizylsgT0f//3f/ZBu+DgYHl7eyslJUUpKSkVzvp6JT179qxy26rOdBMcHHzFJUsuLL/RoUOHctsvDGK2bt1aCQkJWr9+vU6fPq3rr79effv2rfAukAuP6dixo2w2m1auXKnVq1fr+PHj8vPz04ABAzRmzJhKi3p/+eUX/fGPf5SXl5dmz55d6d1FkuTi4qK4uLjLvrd169apoKDAHhMANHbk3DK1kXMvzoGStH37dn377bfav3+/XF1ddcMNN+j2228vt7SVJHXq1Mk+q01FzGazfYD14lwdEBCgwYMH64cfftAf//hH/f3vf7fn/PXr1+uDDz6QJN17773lni8mJkYxMTGVvt5PP/1kH0T+9bFBVFSUFi9ebB8gvrC8DACgYuTdMvUp7xqNRk2cOFH//ve/9cYbb6hDhw7q2rWrpLKbUv76179KkiZPnlzheWtxcbF+//vfy2azafbs2fLw8KhSvNU515WkIUOGyN/fXydOnNDMmTP15z//Wd7e3rLZbPrkk0+UnJwsV1dXTZ48uUqvDwCNAXm3TGPNuxfn1stdKL8wE9TRo0ev+L4PHTqk119/XQcOHFCLFi0qnKkWABojcm6Z2si5FTGbzfacefvtt9tXEbvY1Y4xd+vW7bKFVqdPn1ZaWlq5x11tzuW6LoDqatmypdzd3ZWbm6tJkyYpODhYr7/+utzd3fXOO+/ooYce0ocffqhFixapS5cuslgs2rhxo86fP69u3brp97//fZVf6+6779bWrVu1bNky3XTTTerdu7dMJpO2bt2qs2fPqmfPnnrkkUck6Zpev0WLFvr222+1YcMGRUZGKjs7Wzt27JCHh4deeeWVcvkiJCREBoNBWVlZuueee9S5c2fNnDlTTz75pFJTU7Vs2TJt2rTJfkPDzp07dfLkSXXq1Mk+I/jl3Hnnndq5c6e+/vpr3XbbberVq5eaNWumjIwMHTp0SD4+PnrzzTcVEBBQ5b9jdUVFRSk0NFR79+7VDTfcwG9/HaOIFqiH3nrrLZ06dUrDhw/X7Nmz7cs0/PLLL/rNb36jrVu36o033tDHH39sf8zHH3+sxYsXy9PTU3/5y180cuRIGQwGnT9/XrNnz9a8efM0Y8YMrVmzRn5+fvbH5ebmymAw6MMPP7SfiJ0+fVqPPvqotm7dqtdff11jxoy54gWtjz/+WKtWrZKPj4/eeecd9evXT1LZnZe/+93v7CcU1TFv3rxqP+ZaLViwwL78xpgxY+zbCwsLdejQIUnS008/bT9hueC///2v5s6dq/fff1+hoaH27ReWtDKZTJo8ebI2bdpU7nHff/+9/v3vf+vDDz+scDmRF154QWfOnNELL7ygNm3aXNN7Kygo0OzZsyWV3Ql5cZwA0FiRc8vURs69kAOvu+46/fnPf9Znn31Wbv+PP/6of/7zn3rnnXeqtfTJ3//+dx0/flwGg0G33npruX1//etf9dxzz+n777/XiBEj1LZtWxUXF+vIkSPy9fXVzJkzddddd1X5taxWq/74xz9KKivS7du3b7n9v/43AODyyLtl6lve/f3vfy+r1aqEhASNHz9ewcHBMhgMOnjwoNzc3DRt2jQ98cQTFb7uhUKa+++/v1oXTKt7ruvl5aVPP/1UTz31lJYtW6bExESFhIToxIkTOnXqlNq2bauXXnrJPkMEAIC8e0FjzbvXXXedvL29lZ+fr8zMzAovvh45csQ+c96vZ3O62JtvvqmlS5fq6NGjKi0tVY8ePfSXv/xF11133WVjAIDGgpxbpq6u6y5evFjZ2dkymUz2Zbqr63JjzJfzl7/8RUVFRfL09NTw4cMl1WzOvRjXdQH8mqenp/7617/qzTffVEZGhg4fPqwzZ87ouuuuU7du3fTtt9/q448/VmJiolJSUuTl5aVOnTrp1ltv1e23317lm9+lskL/t956S/Hx8VqwYIE2b96skpIShYSE6P7779d9991XboK5q339rl276v7779ff/vY3JSYmysfHRzfffLMefvjhS2Y4Dw4O1gsvvKCPP/5Ymzdv1pEjR/Tss8/K399fCQkJmjNnjpKSkpSUlCSTyaTg4GDdcccduu+++y5Z1aoys2bNUnx8vObPn6+dO3equLhYLVu21JQpU3TvvffWySpYUVFR2rt3r8aPH1/rr4XyXBwdAIBL7d69W5J066232k+0pLKlHp577jnFxsaWuyvObDbrww8/lFRW4Dlq1Cj7yZG7u7tefPFFtWvXToWFhfbpyi/2/PPPl7uTsVmzZnr66acllZ3gHThw4LLxlpSU2E/8nnvuOfuJllRWcPLee++padOm1fgLOEZKSor+9Kc/SZJiY2N144032vft2bPHvixHcHCwPvroI23ZskWbN2/W+++/r7Zt2+rAgQN64IEHdObMGfvjLhTbzp49Wzt27NDMmTO1fv16paena86cOWrVqpX27NmjqVOnymw2l4tn4cKFWr16tWJiYqpV8FMRs9msGTNmaP/+/TIajZo5c+Y1PR8AOAtybu25kAMXLVqkzz77THfccYdWrVqlHTt26Ouvv1ZMTIxyc3P16KOPXvF9X7Bo0SL7jLITJ0685ATaYDAoLCxMfn5+slgs+vnnn+2zw/r4+FRrgMBms+kPf/iDNm7cKKnsQuevZ5wHAFQPebf2XGvebd++vfz9/VVaWqoDBw5o//79Ki0tVZMmTeTt7V3hspGpqan6/PPP1b59e82YMaPKsV7tua6Hh4duuOEGGY1GFRYWKjMzU6dOnZJU1rdXukgMAI0Nebf2NIS86+LiYh/fnjt37iVjz5I0Z84c+/+XlJRU+lzr16/X4cOH7ePjx44d05o1a64YAwA0FuTcunVhietRo0ZdVTHTlcaYK/P+++9ryZIlkqRHH31UzZs3l1SzOfcCrusCzmX16tXKysoqtypiTEyMsrKy7L8rv/bKK68oKyvrkpsFhg8fruXLl2vnzp1av359uRvbAgICNHPmTC1fvlw7duxQamqqvvrqK02ZMuWS62Pjxo1TVlaW/fewIgaDQWPHjtW8efO0detW7dy5U//97381derUCq+XVef1LxYTE6MvvvhC27ZtU1JSkt54441Kf5vvuusurV69Wjt37tQPP/xgz58BAQH6wx/+oJUrV2rnzp1KT0/Xt99+q8cee6zKBbQXDB8+XJ988ok2btyoHTt2aMWKFXruuecqzDmfffaZsrKydNNNN12yr3Xr1srKytLWrVvLbc/KylJWVtYlK5dIZb//q1atkre3t0aNGlWtuHHtKKIF6qGQkBBJZXeWr1q1SsXFxfZ9kZGRmjt3rp599ln7tk2bNuncuXNydXXVuHHjLnk+FxcXffjhh1qzZo0mTpx4yb4hQ4Zc8piLk9Lp06cvG++F13d3d6/wh9zPz08jR4687HM4WmJioh555BGZzWa1bt1ar732Wrn9Pj4+uu+++zR+/HjNmzdPcXFx9kHNwYMHa968eWrRooWOHTumuXPn2h93oe9Onz6tN998U/fcc4+aNWsmT09PDRw4UHPnzpWrq6uysrK0aNEi++OOHz+uWbNmycvLS3/5y1+u6WJgcXGxfvOb32jt2rWSpKeeekq9evW66ucDAGdCzq09F+fAKVOm6KWXXlKbNm3k5uamiIgIzZ07V23btlVBQYHefffdKz7fV199pZkzZ8pmsykyMvKSgcP8/Hzdc889euutt9SqVSv961//0vbt27Vhwwb9+c9/1rlz5/Tiiy/qpZdeuuJrWa1WPf/88/ryyy8llS1bw8kqAFw78m7tudq8a7FY9Nhjj+lPf/qTjEaj3n//fW3dulWbN2/WW2+9JVdXV73++ut6/PHHyxX05Ofn69lnn5WLi4tmz54td3f3KsV5tee6u3fv1vjx4/Wf//xHw4cP15IlS7Rjxw798MMPeuihh5Senq7777+/0gsPANAYkXdrT0PJu48++qg8PT2VlZWle++9V9u2bZPZbNaxY8f06quv6ssvv7RfdL/c8tNvvvmm/eLxo48+qlOnTum1117TrFmzrubPBwBOh5xbd1JSUrRnzx5JuqpZaK80xlyZ9957T3/7298kSYMGDdJDDz1Ubn9N5VyJ67oA0NhYLBaVlJTIbDbrlVde0alTpzR+/PhqF//i2l0+QwNwiCeeeEKpqanav3+/HnvsMbm5ualHjx7q37+/4uPjFRYWVq79wYMHJUnt2rWr9A6O4ODgCrf7+vrK09Pzku0X3yl5/vz5y8a7f/9+SWUniZXN0HY1SyrecccdVW7bokULvfPOO9V+DanshOmll15SSUmJWrVqpU8//fSSuz5CQ0P1zDPPVPoczZo10+TJk/XWW29p1apVeuqppySVzZRTWFiosLCwCk9q27dvr1GjRmnRokX64YcfdPvtt0uSZs6cqXPnzukPf/hDlZa2rMypU6f06KOPKj09XZL02GOP6b777rvq5wMAZ0POLVMbOffCe3VxcdGjjz56yX43Nzc9/PDDmjlzptasWaPS0lK5uFR8j9/f//53+2t26dJFH3300SUXDefOnavt27fL399fn376qXx9fSWVzd4wYcIEde7cWZMmTdK8efM0YsSIcnf8XqywsFBPPvmkVq9eLansblzu9AeAmkHeLVOf8u4333yjNWvWyMvLS5988km588+RI0cqMjJSY8aM0Y8//qjFixfbL/DOnj1bR48e1YMPPqgbbrihyu/nas91X375ZZ0+fVrx8fF666237Ntbt26t3/3ud2revLleeeUVvfTSS4qLi7MfBwBAY0beLdOY825oaKjee+89PfHEE9q8ebN97FmSjEajpk+frp9++knLli2Tt7d3pc9zIc6QkBA98cQTCgkJ0e9//3t9/vnnuuuuu+zFYwDQWJFzy9TFdd2lS5dKKouvqjPIXlCVMeZfs1gsevnll5WQkCBJGjBggN5+++1LbgitqZzLdV0AaHxOnTqlgQMHysXFRSUlJbr++us1depUR4fVKFFEC9RD4eHh+vbbb/XBBx9o5cqVOnv2rFJTU5Wamqo333xTnTp10h/+8AdFRUVJks6ePStJV3UnQlXvWr+cvLy8K77+1VzA2rJlS5XbXs1yHTabTW+++aZ9yZROnTpp7ty5CggIqPZzSf87obywbLRU9r4LCwsve7LZsWNHSdLhw4clSV988YWSk5PVt2/fap1w/trevXv10EMP6ejRozIYDHrmmWd07733XvXzAYAzIueWqY2c6+PjI0lq2bJlueVkLnYhB+bn5+vMmTP2JbAuMJvNev7557V48WJJUnR0tN5//337c1/s+++/lyRNmTKlwr9Bt27ddOONN+qHH37QkiVLKiyizcnJ0bRp05SRkSFJuvfee/XMM8+wPDQA1BDybpn6lHcv5M/Ro0dXWNTapk0bjRs3Tv/+97+1ZMkSjRs3TomJifrqq68UGhqqJ554osrv5WrPdU+ePKnNmzdLkn7zm99U2GbKlCmaM2eOzp49q8TERN1yyy1Vfn4AcFbk3TKNNe9eMGDAAC1fvlzz58/Xjh07ZLFY1KFDB912223q1KmT7r77bkmq1pj4mDFj9MYbb+jEiRPavHkzRbQAGj1ybpnavq5bWlpqn/igOjPlVmeM+WL5+fmaPn26kpOT7a/56quvVlp4fK05l+u6ANA4+fv7q3379jp8+LAiIiL0xz/+8ZJJ/1A3KKIF6qk2bdroz3/+s15++WXt3LlTaWlpWr9+vVJTU7Vnzx49+OCDWrZsmVq2bGm/47CgoMAhsTZt2lRS2clEZS5euqSqsrKyrjakKzKbzXr66ae1bNkySVLfvn317rvvXvaEyWazqaSkpNKTI5vNJqn8MhyhoaE6fvy4zGZzpc97of2F570Q0/r16y+5O/ViU6ZMkSSNHTtWr7zySrl9qamp+s1vfqO8vDy5u7vrtdde00033VTpcwFAY0bOrZ2cGxoaKklVyoGSLsmveXl5euyxx5SWliZJuvnmmzV79uxK83B2drakslneK9OhQwf98MMP5W54uWDPnv/H3n3HR1Xl/QP/TM1MyqTNpEESCCWE3oMgREmhKyChBiwo4BZX93EtPLq7z7q6u79d3OI+PigqCkgyoUqTrhERCCgBhAASSoBJhSSTZCaZdn9/sBmJ6ZBk2uf9evmSOXPuvd+TM3PPzJnvPfcinnnmGRQWFkIsFuPVV1+1j7VERNR+OO4617jb2vET+PGC0brvrHl5eRgwYECT27366qt49dVXMXLkSKxdu/aev+vWxdhcnBKJBN27d8fJkycbHeeJiDwVx13PHXfvplarG70QxWaz4fz58wDuLDAB3JnjLi4uxo0bNzBkyJAm7xjTpUsXFBcXo7S0tMmYiIg8Ccfcjv1dFwBOnjyJW7duAQAmTZrUqm3aOsdcp7CwEM888wwuXrwIAFi8eDF+85vftLjYQlvG3Lvxd10i8jQzZ86033nD04lEIuzYscPRYRCYREvkdARBwM2bN3Ht2jWMGTMGYrEYAwcOxMCBA/H000/jypUrmDVrFqqqqrB37148/vjj6N69O4A7t/+ora1t9CrE9PR07NmzB2PHjsXixYvbNea7j28wGBq9cvHSpUvtesz7YbFY8Ktf/cp+teKMGTPwxhtvQCaTNbnNiy++iM8//xxjx47FypUrG61z9uxZAD9OogLAoEGDcPjwYZw+fbrJfV++fBnAj7dm6d27NywWS5P1667k7N27N3x9fdGtW7d6z2dnZ2PJkiWoqalBQEAAVq5ciSFDhjS5PyIiT8Uxt2MNGjQIwJ3V43Q6HSIiIhrUqRsDAwIC6l3IUlVVhaeffhqnTp0CACxbtgzPP/98s5OUvr6+qK2tRUlJSZN16iZZf3rLrEuXLmHRokUoKyuDQqHAihUrkJSU1MqWEhFRa3Dc7Vj3Ou7WjYltGT+7deuGoUOHNln/+++/h8lkQrdu3RAUFGT/gfBev+vePW4XFxc3eevLpsZ5IiJPxHG3Y7nCuAsAWVlZ+OGHHxAfH99oAm52djb0ej2USqV9/riwsBAPPfQQAGDDhg0YOHBgo8e9efMmgDurJhEReTKOuZ2n7g4lkZGRja7o/lP3MscM3PneuXDhQuTn50MikeD1119v8W4q9zLm3v0cf9clIiJyvMYvISUihykvL8eECRPw1FNP4cyZMw2e7969u31SzmazAQCGDRsGb29vmEwmbN++vcE2NpsNGzduxJEjR2AwGNo95uHDhyM4OBhmsxkbNmxo8LzRaHSqKyf+9Kc/2RNoFy9ejD//+c/NJtACQGxsLCwWC44ePYqCgoIGz+v1emi1WgDAlClT7OVTp04FAFy/fh379u1rsN2tW7fsf5sJEyYAAF5//XWkp6c3+V+d1157Denp6Vi2bJm97Pr16/jZz36GmpoahIWFIT09nV+0iIiawDG3Y8XHx9tvTfXRRx81WmfNmjUAfhwD6/zmN7/BqVOnIBKJ8Prrr+OFF15ocXJz1KhRAICNGzfCarU2eL68vBz79++vVxcAKioq8Mwzz6CsrAx+fn5YvXo1E2iJiDoAx92Oda/jbt2YuH379kb/hnf/7evqLlu2rNnvrBqNBgCwdOlSpKen4/XXXwdw7991Y2Ji7Ak6mZmZjbYtOzsb+fn59eIkIvJkHHc7liuMuwCwZ88e/PWvf8XHH3/c4FiCINgXi0hNTYVCoQAAhIeH21fKvXt8vtuuXbtQXFwMmUyGBx98sNE6RESegmNu5/n+++8BAIMHD25V/XuZYzaZTFi2bBny8/Mhk8nwz3/+s8UEWuDexlyAv+sSERE5EybREjmZwMBAjB07FgCwfPly5OXl2Z+z2Wz49NNPcfHiRYhEIns9X19fPPHEEwDqJ4gCd2638eabb+L777+Hr68v5syZ0+4xSyQS/OpXvwIArFixAjt37rQ/V1ZWhueff77RxFNHOHHiBNatWwcAmDZtGl566aVWbZeamorAwEAYjUb88pe/xLVr1+zPXb9+HUuWLEFRURG6deuG+fPn25/r0aMHUlNTAdy5pdbdfVNSUoLnn38e1dXViI2NRXJy8n2377XXXkNlZSUUCgXee++9Zm8NRkTk6TjmdiyxWIwXX3wRALBu3Tq899579ltdmkwmvPnmmzh16hS8vb3x9NNP27fbunWr/e+6dOlSpKWltep4S5cuhUwmw5kzZ/DSSy/h9u3b9ueuX7+OpUuXory8HF27dsVjjz1mf+4vf/kLdDodxGIx/v73vze7wg8REd07jrsd617H3UWLFsHf3x8FBQX42c9+Zr/NNHDnos/nnnsOly9fhr+/v70vOptIJLLfDvOTTz7BqlWr6t0++9ixY3jhhRcA3LmotVevXg6Jk4jImXDc7ViuMu7W3R51586d2Lp1q728qqoK//3f/40jR44gICCg3iINAPDzn/8cALB582b83//9H8xms/25Xbt24b//+78BAM888wzUavV9x0lE5Mo45naeujuC9uvXr8W69zrHvGrVKvtxfve737X6t9t7HXP5uy4REZHzkDo6ACJq6A9/+APmzJmDixcvYurUqejatSv8/Pyg0+lQVlYGAPj1r3+Nnj172rf5+c9/jitXruDzzz/Hs88+i/DwcAQFBeHq1auorq6GQqHA22+/3WG3V6qLd926dfj1r3+Nv/3tbwgKCsIPP/wAk8mEpKQk++pvjrRq1Sr7v/Py8pq9elCj0eBf//oXgDu33fr3v/+NZ599FmfOnMGkSZMQHR0NqVSKS5cuwWazITIyEh988AGUSmW9/bz22msoKSnBl19+Wa9vLl68CLPZjC5duuDvf/875HL5fbXtzJkzOHr0KABAoVDgf/7nf5qtv2zZMiQkJNzXMYmIXB3H3I71yCOPID8/H++88w7efvttfPjhh4iMjER+fj70ej0UCgX+8pe/ICoqyr7NBx98YP/3sWPHmh2r+/bta19lJzY2FitWrMBLL72EHTt2YM+ePejRowdsNpt9rO7SpQvef/99+9X+xcXF+OyzzwDcGTvfffddvPvuu00e77HHHsOsWbPu629CROTJOO52rHsZdzUaDd599138/Oc/x5EjR5CYmIgePXrYv+uazWYEBATgf//3fx16u+Y5c+YgPz8fH3zwAf72t7/hvffeQ3R0NMrKyuy3kx41ahT++Mc/OixGIiJnw3G3Y7nCuDt8+HA89dRT+Oijj/Dyyy/jH//4B4KCgnD58mUYjUYEBARg9erVCA4Orrfd1KlTkZeXh3fffRf/+Mc/8OGHHyIqKgrFxcUoKSkBcKevfvnLX953jERE7oBjbucoLi4GAPvKvs25lzlmk8mETz75BAAglUqxefNmbN68ucntEhIS7Emx9zLm8nddIiIi58IkWiInFBISgo0bN+LDDz/EoUOHcP36dRQUFCA4OBhTpkxBWlpag1XSpFIp/v73vyMlJQUbN27E2bNnceHCBQQHB2PChAlYsmQJunfv3qFxv/7663jggQewdu1anD9/HuXl5RgwYAB+9rOfobS01Cm+bGVnZ9v/fe7cuWbrdunSpd7j4cOHY8eOHfjoo4/w5Zdf4saNG5BKpejTpw8mTJiAxx9/vEECLXDni8/KlSuxfft2bNy4Ebm5uSgrK0NkZCRSUlLwxBNPIDAw8L7bdvz4cfu/y8vL8d133zVb/9atW/d9TCIiV8cxt+P94he/wJgxY/Dxxx/j22+/xYULF6DRaJCUlITFixfXmzwuKyvDDz/8YH988uTJZvctldb/OjNhwgT06dMHH330Eb755htcvnwZUqkUsbGxSEpKwqJFi6BSqert32KxAAAMBkOLY+fo0aNb3W4iImqI427Ha8u4W2f48OHYvn07Vq9ejaysLFy/fh0AEBUVhYSEBDz55JMOTaCt85vf/Abjxo3Dp59+iu+++w7nz5+Hj48PRo4cienTp2P69OmQSCSODpOIyGlw3O14rjDuvvzyyxg0aBA+/fRTnDt3DqWlpQgLC8NDDz2EZ555BqGhoY1u96tf/QqjRo3CJ598gpMnT+LChQvw9/dHYmIi5s2bZ19NkYiIOOZ2hqqqKvuq7+Hh4c3Wvdc55osXL6KiogIAYLFYWpwrjo6Orve4rWMuf9clIiJyLiJBEARHB0FERERERERERERERERERERERERERNSZxI4OgIiIiIiIiIiIiIiIiIiIiIiIiIiIqLMxiZaIiIiIiIiIiIiIiIiIiIiIiIiIiDwOk2iJiIiIiIiIiIiIiIiIiIiIiIiIiMjjMImWiIiIiIiIiIiIiIiIiIiIiIiIiIg8DpNoiYiIiIiIiIiIiIiIiIiIiIiIiJyYIAiODsGhPL391HGYREtERERERERERERERERERERERETUjsaPH4/Y2FgcO3bsvvd18OBBLF68uB2icj2CIGDLli148cUXHR1Kh3nnnXcQGxuLP/zhDy61b3chdXQAru7KlSuoqamBQqFA9+7dHR0OERGRW+O4S0RE1Hk47hIREXUejrtERESdg2MuERERuaLz58/j2WefRZcuXRwdikMcPHgQr7zyCkaOHOnoUMhNMYn2PtXU1MBgMLTb/qxWK3JycgAAgwcPhkQiabd9k2OwT90P+9T9sE9dB8ddagn71P2wT90P+9R1tOe4y353P+xT98R+dT/sU9fBcZeawz51P+xT98M+dR2cY6aWsE/dD/vU/bBPyRMJguDoEBzK09tPHU/s6ACIiIiIiIiIiIiIiIiIiIiIiIiIiIg6G1eiJSIiIiIiIiIiIiIiIiIiIiIiIupgx44dw6JFizBr1iz84he/wD//+U98/fXXKC8vR0REBCZPnowlS5bA29sbAPDKK69gy5YtAICbN28iNjYWXbp0wcGDB+37vH37NlatWoWDBw9Cp9NBoVBgwIABePzxx5GQkFDv+Js3b8arr76KX/3qV5DL5fjwww9hMBjQq1cvrF+/HnK5HACwa9cuZGZm4vz586itrUVkZCSmTp2KtLQ0e2z3c/xly5YhKSkJK1aswKlTpyCXy9G/f388/fTTeOCBB+z1Fy5ciOzsbABAdnY2YmNjMXLkSKxduxYAcPnyZbz33nvIyclBQUEBFAoFYmNjMX36dMycORMikahV/WIymbBx40bs3r0bFy9eRGVlJZRKJXr06IGpU6di/vz59Va+rosrKysLhw8fxvr165GXlwepVIrBgwdj6dKlGDFiRIPjXLx4Ee+99x6OHTuGyspKxMbGYtmyZa2K8afxrl69Gvv27UN+fj5MJhMiIiKQkJCAxYsXQ61Wt2o/2dnZ+OSTT/Ddd9+hsrISgYGBiI+PxzPPPIPY2Nh6detei6tXr8atW7fwwQcf4MqVKwgMDMQDDzyAZ599FtHR0Y3GmpGRgW3btiEvLw+CICAmJgYzZszA3LlzIZPJ6tUvKirCypUrkZ2djZs3b0IqlSImJgaTJ0/G/Pnz7a/R9sQkWiIiIiIiIiIiIiIiIiIiIiIiIqJOkp+fjxkzZsBisWDQoEEA7iTY/t///R9OnTqF1atXAwCGDBmC27dvIysrC97e3khMTERQUJB9PxcvXsRTTz2FkpIShIaGYsyYMTAYDMjOzsbhw4exbNkyvPDCCw2Ov337dly5cgXx8fEQiUQICAiAXC6HIAh48cUXsWPHDshkMgwfPhze3t747rvvsGLFChw8eBCffPIJvLy87uv433//PVavXg2lUokxY8agtLQUX3/9NQ4fPozf/va3mD9/PgBg9OjRAO4kewYHB2P06NHo0aMHgDsJtKmpqaiqqkLv3r3x0EMPQa/X4/jx48jOzsbZs2fx29/+tsW+MJlMePLJJ3HixAmoVCoMHjwYCoUCV69eRU5ODnJycnDhwgX88Y9/bLDtW2+9hT179iA2NhZjx45Fbm4uDh06hCNHjmD16tUYOXKkve6RI0fws5/9DAaDAbGxsRg6dCguXLiAZ599Fr169WoxzjqCIOBnP/sZDh06hICAAAwZMgRSqRSnTp3CRx99hM8//xxbt25FQEBAs/v5v//7P/zzn/+EIAgYOHAgIiIicPnyZWzfvh27d+/GX/7yF0yZMqXBduvWrcOBAwfQrVs3PPTQQ7hw4QK2bNmCAwcO4IMPPrC/ngGgqqoKTz/9NE6ePAk/Pz8MHjwYXl5eOHHiBP74xz/iwIEDeP/99+2Jsbdv38bs2bNRWFiIqKgoPPjgg6itrcXx48dx6tQpHDlyBO+9916r/1atxSRaIiIiIiIiIiIiIiIiIiIiIiIium9msxlWq9XRYbSZRCJpsCJmR8rOzsbo0aOxYsUKe1Ls6dOnMX/+fHzzzTc4deoUBg0ahDlz5mDgwIHIyspCYGAg/va3v9n3YbFY8Mtf/hIlJSV4+umn8fzzz9vbcOnSJSxevBgrV67EoEGDMH78+HrHv3z5Mn7/+99j3rx5AACbzQYAyMjIwI4dO9C1a1d8+OGH6NatG4A7yZCLFy/GyZMnsXr1aixbtuy+jv/1119j1KhR+Pe//w0/Pz8AwL59+/CrX/0Kb731FkaPHo1u3brZE0yzs7PRo0ePeu3/8MMPUVVVhaVLl+LXv/61vTw3Nxdz585Feno6li1bhpCQkGb7QqvV4sSJE+jfvz/WrFkDHx8f+3Nbt27Fyy+/jC1btuDll1+2x1rn4MGD+Mc//oFJkyYBAKxWK55//nns3bsX77//vj2J1mg04pVXXoHBYMBLL72ExYsX2//uf/vb3/Dhhx82G+Pdvv32Wxw6dAjdunXDpk2b4OvrC+BOMvDixYuRnZ2NzMxMLFmypMl9HDp0CP/4xz/g7e2Nd955Bw8++GC9Nr/66qt45ZVXEBsbi549e9bb9sCBA1i8eDFefPFFiMVi2Gw2/PWvf8VHH32El19+Gdu2bbMnxb755ps4efIkHnzwQfz1r3+1v9b1ej2ee+45HDlyBG+//TZeeeUVAHdef4WFhZg2bRr++te/2lcS1ul0SE1NxZdffml/b7QnJtESERERERERERERERERERERERHRfdm9ezeys7MhCIKjQ2kzkUiEkSNHYuLEiZ12zD/84Q/1VpUdOHAghg4dimPHjuH8+fMtJgru27cPV69exZAhQ/Diiy/aEw4BoGfPnnjllVfw/PPPY9WqVQ2SWL29vTF79mz7Y7FYDABYu3YtAOB3v/udPYEWAHx9fbF8+XK8+OKLKCkpue/jKxQKvP322/WSUpOTk5GamoqMjAxotVq8/PLLzba/uLgYABAWFlavPC4uDm+99RZsNps9mbM5UqkUDz/8MJ544ol6CbQAMH36dLz55pvQ6/UoKChokEQ7ZcoUewItcCcZe9GiRdi7dy/Onz9vLz9w4AAKCwsxdOhQewItcOfv/uKLL+LQoUO4ePFii7He3W5/f/968crlcrz22ms4efJki6+duqTdn//85/USaOvafObMGaxbtw6rV6/Gm2++We/5/v374ze/+Y29v8ViMX7zm9/gq6++wqVLl/DNN9/goYceQnFxMT777DP4+PjUS6AFAJVKhb/85S9ITExEeno6fvGLX8DX19fettDQ0Hqvp4iICLz11lsoKytr0N/tQdzueyQiIiIiIiIiIiIiIiIiIiIiIiKP4qoJtAAgCAKys7M77XgajQaRkZENyutWTTUajS3u48iRIwCABx54oF7CYZ1x48ZBLBbj1KlTDfbXu3dvSCSSemXFxcXIy8uDUqnEmDFjGuxv0KBB2LdvH15//fX7Pv4DDzyA4ODgBtukpKQAAI4ePdpku+vEx8cDAP70pz/h1Vdfxe7du1FRUQHgTnLrtGnTEBAQ0OJ+5s2bh5UrV2LUqFH2MpPJhIsXL2LDhg32VXpNJlODbYcOHdqgrLE+PHbsGADg4YcfblBfLBbb290aw4YNg0wmw6lTpzBv3jx88sknyMvLAwDExsZi7ty5iIuLa3J7q9WKb7/9FgAwderURuvUlTfWD1OnTm3Q32KxGElJSQB+fF0cP34cVqsVcXFx9RJo64SGhqJPnz6oqalBTk4OgB/79KOPPsKvfvUrbN261Z60nZCQgOnTpyM0NLTJtt0rrkRLRERERERERERERERERERERERE92XkyJEum0hbtxJtZ/H392+0XCq9k85ntVpb3EdBQQEA4N1338W7777bbN3i4mJER0fbH6tUqgZ1ioqKANxJAv1pgm17H7979+6N1gsPD68XS3OeeOIJXL58GZs3b7b/JxaLMWjQIKSkpGD27Nnw9fVtcT8AUFZWhszMTBw5cgTXrl1DYWGhPXm2LmG0sdd1Y3/Hur9d3fZ3t6eufT/VWEJ1U0JDQ/H222/j9ddfx8mTJ3Hy5EkAd1ZrffjhhzF79mz06dOnye3Ly8thMpkglUqbXNW1Lp66lWHvdvcKxXf7ad/pdDoAwIkTJxAbG9tsm+peS5MmTcL58+fxwQcfYPfu3di9ezeAO6sLJyUlYe7cuVCr1c3u614wiZaIiIiIiIiIiIiIiIiIiIiIiIjuy8SJE5GYmNiqBFBnI5FIIJPJOu14ja3c2lZ1SZpDhw5Fly5dmq3707aJxQ1vYF/Xb62Nrb2PD/yYqNqaJF6pVIq33noLzz77LPbv34+vv/4a3333nT2x9OOPP0Z6enqLsX377bdYsmQJqqqqEBAQgP79+yMlJQWxsbEYMWIEFi1aZE8I/anW/q1aqleXPN1aKSkpGDt2LL788kt89dVXOHr0KHQ6HT799FOkp6fj97//PebMmdPotj9NDm5MXT/I5fIGz7W27+oeR0dHY+DAgc225+5k3hdeeAFpaWnYt28fvv76axw/fhy5ubnIzc3Fxx9/jI8//hj9+/dvdn9txSRaIiIiIiIiIiIiIiIiIiIiIiIium8ymaxTk1E9WUhICABg/PjxeOaZZ+57fxqNBsCd1UdtNlujyZLp6enQaDR46KGH7uv4hYWFjZbfuHEDAFpMfL1bZGQknnzySTz55JMwm83Izs7GW2+9hUuXLuH999/H//zP/zS5rSAIePXVV1FVVYXFixfjv/7rvxok8Or1+lbH0pS6JNG69v1Ua1be/SmlUolJkyZh0qRJAIArV67go48+QmZmJv7yl79g5syZjb4XAwMDIZfLYTKZUFhY2OhqtPn5+QDQ6KqvTcX6076rez1FR0fjb3/7W5vaptFoMH/+fMyfPx82mw05OTn461//iu+++w7/+Mc/8MEHH7Rpfy1pPC2YiIiIiIiIiIiIiIiIiIiIiIiIiByqqRVDR44cCQDIyspq9Pnvv/8eEyZMwLJly2CxWFo8TpcuXdClSxcYDAYcO3aswfM//PADfv/73+P111+HRCK5r+MfOXIEJpOpwTZ79uwBAIwdO7bFeJ9++mnEx8fXS8iVyWQYM2YMFi9eDAAoKChodh+3bt3CtWvXAAC/+MUvGiTQfvvtt6iqqgLw48qq9+LBBx8EAOzdu7fR/Rw8eLDV+/r000+RmJiI999/v1559+7d8bvf/Q5SqRTV1dWorKxsdHupVIqhQ4cCAHbt2tVonR07dgAA4uPjGzz3xRdfNCizWq3Yv38/AGDcuHEAgBEjRkAkEuHUqVMoKytrsI3RaMSMGTOwYMEC5OXlAQCWL1+OMWPG4LvvvrPXE4vFGDp0KJ5//nkALffpvWASLREREREROTWlUglfX19Hh0FERERERERERERERETU6eRyOQCgqqoKNpvNXj558mSEh4fj+PHjWLFiBcxms/254uJivPrqq7h69So0Gg2k0tbdsP7xxx8HAPzhD3+ol6xYWVmJ3//+9wCA2bNnQyQS3dfxb926hd/97nf1ttmxYwe2bNkClUqF2bNn28u9vLwAABUVFfX2ERwcjPLycvz5z3+ul5BrMpnw+eefAwAGDhzYbHt9fX3tq7Xu27ev3nO5ubl46aWX7I9ra2ub3VdzEhIS0KNHD5w7dw4rVqyo14+rVq3CiRMnWr2vHj164MaNG1i9ejWuXLlS77kdO3bAYrGga9euCAoKanIfTz31FADgnXfewTfffFPvua1btyIjIwMymQzz589vsO3BgwexYcMG+2Or1Yq33noLV69exZAhQzBs2DAAQNeuXZGSkoKKigq8+OKLuH37tn0bk8mE119/HefOncOtW7cQExMD4M6KvaWlpVixYoU9eRkAbDabPbG3pT69F617dxAREREREXUyi9UGk1WAf3g0KgwmlFSZoFLKIJeIIZW4z/WAd9ppg95oQYXRBH+lHCql1O3aSURERERE1Bx+NyIiIiIiImpceHg4vLy8UFFRgblz5yIqKgp/+9vf4OXlhX/961945pln8P7772Pr1q3o27cvLBYLjh8/jtraWgwcOBAvv/xyq4+1cOFCnDx5Ep9//jkmTpyIESNGQCqV4uTJkygvL8fQoUPx7LPPAsB9HV+j0WDbtm04evQoBgwYAJ1OhzNnzkChUODPf/4zNBqNvW50dDREIhEuXLiAxx9/HLGxsVi+fDn+67/+C8eOHcPnn3+OEydOoH///gDurIBbUlKC3r1725OCm6JQKJCWlobVq1fjpZdeQnp6OkJCQnDz5k18//33UCqV6Nq1K27cuIGSkpJW/x1/Si6XY8WKFXjqqaewatUq7Nu3D3369MHly5dx8eJFDB06tN7qq80ZNWoUUlNTsWHDBkydOhVDhw5FYGAgbty4gbNnz0Imk+F3v/tds/tISEjAL3/5S7zzzjt48sknMWjQIERERCAvLw8XL16EXC7HG2+8gT59+jTYNjw8HK+99hrWr1+PqKgofP/997hx4wa6dOmCv/zlL/VWTv7DH/6A/Px8fP3110hKSkL//v3h4+ODU6dO4datWwgMDMQ777xj32bx4sU4ePAgTpw4gfHjx2PQoEGQy+XIzc3FzZs3ERoail/+8pdt+Mu3DpNoiYiIiIjI6RhMFuzPLcJ7WZdxVqe3l/eLUGFpQgyS4kLhLXf9rzOe0k4iIiIiIqLm8LsRERERERFR05RKJf7617/i7bffxrlz53D9+nWUlZUhMDAQAwcOxLZt2/Dhhx8iKysL33zzDby9vdG7d2888sgjmD17NhQKRauPJRaL8fe//x0JCQnIzMzEt99+C7PZjOjoaDz11FN48skn7SvjArjn4/fr1w9PPfUU/vnPfyIrKwt+fn6YOnUqlixZgtjY2Hp1o6Ki8Prrr+PDDz/Et99+ixs3buDVV19FSEgItFotVq5cia+//hpff/01pFIpoqKiMG/ePDz55JPw9vZusc0vvfQSevTogfT0dPzwww+4dOkSwsPDMXv2bCxevBhffvkl/vSnP+HAgQOYPHlyq/+WPxUXF4dNmzZh5cqVyMrKwsGDB9GtWzf8+c9/hlgsbnUSLQD8z//8D+Li4rBt2zacPXsWJpMJQUFBeOSRR/DMM8+gd+/eLe7jF7/4BYYNG4ZPPvkEOTk5OHfuHEJCQjBr1iw8/vjjTe5j4cKF8PHxwZo1a3Dw4EGEhobiqaeewjPPPNNg9duAgABkZGTg008/xa5du3DmzBkAQEREBB599FE88cQTCA0Ntdf38fHBJ598glWrVuHgwYM4duyYvX5Tx2gPIkEQhHbfqwfJzc2FwWCAt7c34uLi7nt/VqsVOTk5AIDBgwdDIpHc9z7Jsdin7od96n7Yp66D4y61hH3qHgwmC97alYt1R/ObrJM2KhrLJ/dx6R9RPaWdP8X3qetoz3GX/e5+2Kfuif3qftinroPjLjXH3fvUE78buXufeiL2qevgHDO1hH3qftin7od9SuTaNm/ejFdffRUPPfQQ3nvvPUeHQ23wyiuvYMuWLXjppZewePFiR4fTrnj/GyIiIiIichoWqw37c4ua/fEUANYdvYYDucWwWG2dFFn78pR2EhERERERNYffjYiIiIiIiIjI0ZhES0RERERETsNktWHll5dbVXdlVh5MLvoDqqe0k4iIiIiIqDn8bkREREREREREjsYkWiIiIiIichp6owXnCvStqntWp4feaOngiDqGp7STiIiIiIioOfxuRERERERERESOJnV0AERERERERHUqjKY21dfXmBHmr+igaDqOp7STiIiIiIioOfxuRERERERE5FlmzpyJmTNnOjoMugd//vOf8ec//9nRYXQIrkRLREREREROw18pb1N9lULWQZF0LE9pJxERERERUXP43YiIiIiIiIiIHM3pV6IdP348bt682WK9kSNHYu3atfbH33zzDVatWoXz58+jpqYGMTExmDt3LmbNmgWRSNSRIRMRERER0T1SKaXoF6HCWV3Lt/PsF6GCSun0X2ka5Snt9GSCICA7OxunT5/G5MmT0aVLF0eHRERERETkdPjdiIiIiIiIiIgczelnG5KSknD79u1GnxMEAbt374bFYkG/fv3s5enp6fj9738PmUyG+Ph4yGQyHD16FK+99hq+++47/OlPf+qs8ImIiIiIqA3kEjGWJsTgufScFusuS+gBucQ1b67x03bKpWIkxYUg2EeOW9Um7M8thsliA+Da7WyKUqmERCJxdBjtThAE5OTkICMjA5mZmbh69SoAoHv37sjLy+MFnUREREREP+Ep3wGJiIiIiIiIyHk5fRLt8uXLm3zuf//3f2GxWDBixAi8+OKLAIArV67gjTfegK+vL9auXYu+ffsCAHQ6HR5//HFs3rwZCQkJmDhxYqfET0RERETUnixWG0xWG/RGCyqMJvgr5VAppZBLxJC6wY+JUokYSXGhSBsVhXVH85uslzYqGolxIS7b5rp2/nJ8DwzvFoxh0YHQG80oN5gQ4C3H/3tsEL7NL8OJq7ddup0/def1K8A/PBoVBhNKqkxQKWUu//o9e/YstFotMjIy8MMPPzR4vry8HFarFVKp038FJyIiIiLqVJ7yHZCIiIiIiIiInJfL/oJ37Ngx/Pvf/4ZKpcKKFSvsP0Z+8MEHsFqtWLx4sT2BFgAiIiLw29/+Fk8//TQ++OADJtESERERkcsxmCzYn1uE97Iu17vVZb8IFZYmxCApLhTecpf9iG/nLZdi+eQ4xHcPxsqsvAZtXZbQA4lxIS7fVm+5FMsSemLvuSLMee9Ig3Y+PTYGyxJ6uHw767jb6/eHH36AVquFVqvF999/32gdkUiEhIQE/PGPf2QCLRERERFREzzlOyAREREREREROSeXnHEwmUz47W9/C5vNhpdeegmhoaH257744gsAQEpKSoPtRo8eDT8/P5w5cwZFRUX1tiMiIiIicmYGkwVv7cptdGWeszo9nkvPQdqoaCyf3Mctflj0lksxqX8YEuNCUFZdC73BjEBfL7dYtbSOodaCN3fmYn124336gjYHC+KjsHxyHHy8XLtP3eX1e/XqVWRmZkKr1eK7775rst7o0aMxZ84czJo1CxEREZ0YIRERERGRa7r7O6DeaIG+xgyVQuZWd14hIiIiIiIiIufkvL9ONuPjjz/G1atXMWDAAMyaNcteXlpailu3bkEmkyEmJqbBdhKJBDExMTh16hQuXLjAJFoiIiIicgkWqw37c4uavbUlAKw7eg3x3YMwqX+YW/zAKJWIIYKAioJrkEgk0IT1hEQicXRY7cJksWLvuaJGE2jv9umxfIzsFoRJA8Igl7pm21399avT6bBhwwZkZGTg6NGjTdYbNmwY5s6di9mzZyMqKqoTIyQiIiIicg/S/yTLesulCPNXODocIiIiIiIiIvIQLpdEW1VVhffffx8A8Nxzz0EkEtmfKy4uBgCo1WqIxY3/6BoSElKvbnsRBAFWq/W+93P3Ptpjf+R47FP3wz51P+zT+9fZSW0cd6kp7tqnJquAlV9eblXdlVl5SIwLgQhCB0fVOaxWK4xGo/3f7sJsFfD+V63r0/cPXUZy31BIRK7Zfld8/RYXF2Pz5s3QarX4+uuvIQiNxzNgwADMnj0bqamp6Nmzp728o1+rrjjuuuv52ZOxT90T+9X9sE/vH8ddcgbsU/fDPnU/7NP754pjLsC+d0fsU/fDPnU/7NP75y4LlhARtReXS6LNyMhAZWUl+vXrh3HjxtV7zmAwAAAUiqavUPby8qpXt70YjUbk5OS06z7PnDnTrvsjx2Ofuh/2qfthn96bYcOGderxOO5Sa7hLnyqVSviHR+Ncgb5V9c/q9CirrkVFwTV78qm7cJc+DQgIgHdwRJv6tMJohuGWDuXl5R0bXDtzpddvRUUFvvjiC+zbtw/Hjx+HzWZrtF50dDRSUlKQnJxsvwNKVVVVu49LzXH1cddd3sv0I/ape2K/uh/26b3huEvOhn3qftin7od9em9cfcwF2PfuiH3qftin7od9em86e9wlInJ2LpVEa7VasWbNGgDAkiVLGjxft/rs3avTNqWplYSIiIiIiJyJRCJBhcHUpm30BjOvInZiMpkMZW3s03KjGT4yWQdF1HGc/fVbVVWFrKws7Nu3D0ePHoXFYmm0XpcuXZCcnIzk5GT07t27Vd85iYiIiIiIiIiIiIiIiMj5uVQSbXZ2NoqKiuDv74/x48c3eN7HxwcAUFNT0+Q+amtrAQDe3t7tGptSqURsbOx978dqtdqvlBkwYACTH9wA+9T9sE/dD/vU9XDcpaa4a5+WVLUtCTHQ1wuasJ4tV3QB7tqnxZVt69MAbxlCfLugS5cuHRRRx3G21291dTV27doFrVaLzz//3P4d8ae6dOmC1NRUzJ49GyNGjPDoxNn2GHfd9b3sydin7on96n7Yp66H4y41hn3qftin7od96no4x0xNYZ+6H/ap+2GfEhFRe3OpJNo9e/YAACZMmAC5XN7g+dDQUABAaWkpBEFo9EfO4uJiAEBISEi7xiYSidp9YJZIJBzs3Qz71P2wT90P+9Q1cNyl1nCnPlUpZegXocJZnb7Fuv0iVFApZW7TdgAICAiATCZz6z6VS8VIigtBsI8ct6pN2J9bDJPFBuA/fapw3T51htdvTU0Ndu/eDa1Wi23btsFgMDRaLyQkBKmpqZg7dy5Gjx5tv9uJp2vvcded3st0B/vUPbFf3Q/71DVw3KWWsE/dD/vU/bBPXQPnmKk12Kfuh33qftinRETUHlwqiTYrKwsAMHHixEafDwgIQGhoKIqKinDt2jV069at3vNWqxWXL18GgHa5spCIiIiIqDPIJWIsTYjBc+k5LdZdltADcol7JP6ZLFaYrQK8gyNQZjChuNIElVIGmUQEudS1J8VkEhGeGRuDFXsv4I8zBmBYdCD0RjPKDSYEeMvx/x4bhG/zy/DaljNYMjYGMonrroLqqNev2WzGvn37oNVqsXXrVuj1jSfxBgUF4bHHHsPcuXORkJDACVciqsditcFktUFvtKDCaIK/Ug6VUgq5RAypm4y3RERERERERERERESezGWSaEtKSqDT6SCVSjFkyJAm6yUkJCAzMxN79+7FkiVL6j13+PBhVFZWok+fPggLC+vokImIiIiI2oVUIkZSXCjSRkVh3dH8JuuljYpGYlyIWyT1VNdasO9cEVYdulxvBdN+ESo8MzYGyX1D4ePlMl9nGpBLJZjQLxRJfUOx71wR5rx3pEE7nx4bg8+fHweJCC6dNNyZr1+LxYKsrCxkZGRg8+bNuH37dqP1VCoVZsyYgTlz5iApKQkymeyej0lE7stgsmB/bhHey2o4Fi1NiEFSXCi85a47FhERERERERERERERkQsl0Z4+fRoA0Lt3b3h7ezdZb8GCBdi0aRPee+89jBw5EoMHDwYA6HQ6vPHGGwCApUuXdni8RERERETtyVsuxfLJcYjvHoyVWXkNknmWJfRAYlyIWyTzGGoteHNnLtZnN0y4PKvT43ltDhbER2H55DiXTqQVBOCtZtr5wl3tdHUd+fq12Ww4fPgwtFotNmzYgOLi4kbr+fj44JFHHsGcOXMwYcIEKBSKe24PEbk/g8mCt3blNpr8f1anx3PpOUgbFY3lk/u4xdhLREREREREREREROSpXGaW//r16wCAyMjIZuv16dMHzz//PFasWIH58+dj5MiRUCgUOHbsGAwGA1JTUzF58uTOCJmIiIiIqF15y6WY1D8MiXEh0Bst0NeYoVLI3Oq20iaLFXvPFTWaWHq3T4/lY2S3IEwaEOaSq7TWmq3Y08p2jugWhEn9w+Alc7123u3u129ZdS30BjMCfb2gUsra/PoVBAHZ2dnQarXIzMzEzZs3G62nUCgwefJkzJ07F1OmTGn2gkwiojoWqw37c4uaXT0bANYdvYb47nfO0e4wBhMREREREREREREReSKXSaItKysDAISHh7dYd8mSJejRowc+/vhjnD59GiKRCD169MC8efMwY8aMjg6ViIiIiKjDSP+TbOgtlyLM3/1W0jRbBbz/1eVW1X3/0GUk9w2FKy4AaLEJWNXKdq46dBkpfUM7OKLOIZWIIYKAioJrkEgk0IT1hETSuuRgQRCQk5MDrVYLrVaLq1evNlpPJpNhwoQJmDt3Lh555BH4+fm1YwuIyBOYrDas/LJ15+iVWXlIjAthEi0RERERERERERERkYtymZ+bX3jhBbzwwgutrp+YmIjExMQOjIiIiIiIiNqb3mjGuQJ9q+qe1elRUWOGt5fLfK2x85R2NsVoNLa67rlz55CRkQGtVouLFy82WkcikSAxMRFz5szBjBkzEBgY2F6hEpEH0hstbTpH640WeLviFR1EREREREREREREROQ6SbREREREROT+ygzmNtUvN5gR7q/soGg6jqe0815dunQJWq0WGRkZ+P777xutIxKJkJCQgDlz5uCxxx6DRqPp5CiJyF1VGE1tqq+vMbvl6vBERERERERE5Fry8vJw8uRJxMXFoV+/fo4Oh4iIyGUwiZaIiIiIiJxGoLesTfUD2ljfWXhKO9vi2rVryMzMhFarxbfffttkvQceeABz587FrFmzEBER0YkREpGn8FfK21RfpXD/czQRERERERERObecnBxs27YNgiDg3Llz6N27N2QyzlkQERG1BpNoiYiIiMitKJVKSCQSR4dB90illKFfhApndXduoy0Ri9A71Be+XlJU1VpwsagKVpsAAOgXoXLZxKWftrM5rtzOluh0OmzevBlarRZHjhxpst6wYcMwZ84czJ49G9HR0Z0YIRF5IpVS2rZztJLTa0RERERERETkONnZ2fj888/tj/39/SEWix0YERERkWvhLD8RERERuQWL1QaTVYB/eDQqDCaUVJmgUsogl4ghlXCyyFXIJCI8MzYGv9t2FmmjojE/Pgo1JituG0wI8pbDSyZGevZ1rDt6DUvGxkAmETk65HsiFYvw9NgYvKDNabHuM2NjIBW7ZjsbU1JSgo0bN2Lv3r04efIkBEFotN6AAQMwZ84czJkzBz179uzkKInIk8klYixNiMFz6Tkt1l2W0ANyfs4gIiIiIiIiIgc5dOgQDh48aH+s9PbBqORpKKkyQ6UU+BsJERFRKzCJloiIiIhcnsFkwf7cIryXdbneqnH9IlRYmhCDpLhQeMv50dcVyKUSpPQLxQM9gvHVxRIsWXOiQZ8+Mbob9r0wDr4KKeRS11x12EsmQUrfUKTFR2Hdsfwm66XFRyO5byi8ZK7ZzjplZWXYsmULtFotDhw4AKvV2mi93r17Y+7cuZgzZw769u3byVESEd0hlYiRFBeKtFFRWHe0mXP0qGgkxoXwhygiIiIiIiIi6nSCIODAgQM4fPiwvaxW7IVNt7vj3TW5AHL5GwkREVErcZQkIiIiIpdmMFnw1q7cRpNczur0eC49B2mjorF8ch9OErmQdw7+0GSf/mbjaXufujKxCHgusRcGRwVg9eGrDZKFnxzTDeN6aeCqi9Dq9Xps27YNWq0We/bsgdlsbrRet27d7ImzgwYNgkjkog0mIrfiLZdi+eQ4xHcPxsqsvAbn6GUJPZAYF8LPFkRERERERETU6QRBwOeff47jx4/byypsXthT0xvVgpe9jL+REBERtQ5HSCIiIiJyWRarDftzi5pdJQ4A1h29hvjuQZjUP4yrxTk5T+nTWrMVu88W4ffbzmJBfBTeXzQcNSYrygwmBHrL4SUTY/2xfLyxIxf/80g/TOof5hKr0RoMBuzYsQNarRY7d+5EbW1to/UCAwMRHx+P3/72txg1ahQTZ4nIKXnLpZjUPwyJcSHQGy3Q15ihUsigUkp5K0QiIiIiIiIicgibzYbt27cjJyfHXnbbpsTe2t4wQtboNq4+n05ERNTRmERLRERERC7LZLVh5ZeXW1V3ZVYeb7nsAjylTy02Aau+uowKoxnvfpmHlVl5iA3zg6+XFFW1FlworIRNuFN31aHLSOkb6tiAm1FbW4vdu3cjIyMD27dvR3V1daP1goKCkJiYiEcffRQxMTGQy+UYPHgwE2iJyKlJ/5Ms6y2XIsxf4ehwiIiIiIiIiMiDWa1WbN68GefOnbOXVUlU+NwYA1ML6T+uPJ9ORETU0ZhES0REREQuS2+04FyBvuWKuHPbIr3RwtsVOTlP6VO90VyvnTYByC2obLTuWZ0eFTVmeHs5TzvNZjP279+PjIwMbN26FXp9433m7++P8ePH45FHHkFqaip8fHxgtVrrrZJARERERERERERERM0zm83IzMzEpUuX7GXhXSLx/y6pYUHLdzFz5fl0IiKijsbRkYiIiIhcVoXR1Kb6+hozV5Fzcp7Sp2UGc5vqlxvMCPdXdlA0rWO1WvHll19Cq9Vi06ZNuH37dqP1fHx88PDDD2Pq1KmYP38+/Pz8OjlSIiIiIiIiIiIiIvdRW1uL9PR0XLt2zV7Ws2dPDB43EZZLR1u9H1edTyciIupoTKIlIiIiIpflr5S3qb5KIeugSKi9eEqfBnq3Le6ANtZvLzabDYcPH4ZWq8XGjRtRVFTUaD2FQoFx48ZhypQpSEtLQ1BQUCdHSkREREREREREROR+jEYjPv30U9y8edNeFhcXh8ceewwlVW1brMFV59OJiIg6GpNoiYiIiMhlqZRS9ItQ4azuzq3kJWIReof6wtdLiqpaCy4WVcFqEwAA/SJUUCn58dfZ/bRPm+PKfapSytrWzk6c3BQEAcePH0dGRgYyMzPrTc7eTS6XY8yYMZg0aRIef/xxhISEtPoYSqUSEknLtxgjIiLqCJWVldi5cyeqqqrw6KOPQqPRODokIiIiIiIi6kCuOh9ZVVWFtWvXori42F42aNAgPPLIIxCLxVApBY+YTyciIupoHCGJiIiI3JjJYoXZKkBvNKPMYEagtwwqpQwyiQhyqetNGP2UXCLG0oQYvL71LNJGRWN+fBRqTFbcNpgQ5C2Hl0yM9OzrWHf0GpYl9IBcInZ0yPfNYrXBZLVBb7SgwmiCv1IOlVIKuUQMqRu0r65Pn0vPabGuK/epVCzC02Nj8II2p8W6z4yNgVQs6tB4BEHAqVOnoNVqodVqceXKlUbrSaVSPPDAA0hJScETTzyBrl27tuk4d16/AvzDo1FhMKGkygSVUuY2r18iInJ+ZWVlWLt2LcrKygAAR44cwSOPPOLgqIiIiIiIiKgjuPJ8ZEVFBdasWYPbt2/by0aMGIFJkyZBJLozX+wp8+lEREQdjUm0RERERG6qutaCfeeKsOrQ5XpXIfeLUOGZsTFI7hsKHy/X/jgolYiRHBeKUd2DkXWxBEvWnGjQ1idGd8O+F8bBTyF1+kmxlhhMFuzPLcJ7WQ37dGlCDJLiQuEtd/0+TYoLRdqoKKw7mt9kvbRR0UiMC3HZPvWSSZDSNxTzR0ZhfXbT7VwQH4XkvqHwknVM0vu5c+eg1WqRkZGBixcvNlpHIpFgxIgRSE5OxpNPPonu3bvf07E84fVrMplQUFAAnU5n/39lZSWGDRuGlJQUR4dHROTxSktLsWbNGlRWVtrL7nVcIyIiIiIiIufmyvORt2/fxpo1a1BRUWEvGzNmDBITE+0JtIDnzKcTERF1NOf8REBERERE98VQa8GbO3MbTc47q9PjeW0OFsRHYfnkOJdPpBUA/OvgD41OEJ3V6fGbjaeRNioayyf36fzg2pHBZMFbu3KbbOdz6Tn2djrrxF9riQA8N74XBkcGYPXhqw0mOJ8c0w3jemnQsWuzdjwfLyn+e0ocRnYP6tRk90uXLtlXnD1z5kyjdUQiEYYMGWJfcTY2Nva+jumOr1+z2YzCwsJ6CbMlJSWN1j127BiSkpIgFnOSmojIUQoKCrBu3ToYDAZ7WXJyMgYMGODAqIiIiIiIiKgjuPJ8ZHFxMdauXYuqqip72fjx4zF27NhG63vLpVg+OQ7x3YOxMiuvwTzzsoQeSIwLcbp2EhEROROOkkRERERuxmSxYu+5omZXtwSAT4/lY2S3IEwaEAa5tGNWuexoFqsN+3OLmr3CGgDWHb2G+O5BmNQ/zCWvtPaUdgJ32rovtwivbz2LBfFReH/RcNSYrCgzmBDoLYeXTIz1x/Lxxo5c/HF6f5duK3AnkXZS/zCk9A1FRY0Z5QYzArxlUClkkIpF7bYC7bVr15CZmQmtVotvv/22yXoDBw5ESkoKFi5ciIEDB7bLsd3h9WuxWFBUVASdTmdPmi0uLoYgCK3aftCgQUygJSJyoPz8fKxfvx61tbX2sqlTp2LYsGEOjIqIiIiIiIg6givPR+p0Oqxbtw5Go9FeNnHiRMTHxze7nbf8zjxzYlwI9EYL9DVmqBQyqJRSyCVip2kfERGRs2ISLREREZGbMVsFvP/V5VbVff/QZST3DYWrXoBsstqw8svWtXVlVp7L3q7IU9oJ/NjWCqMZ736Zh5VZeYgN84OvlxRVtRZcKKyE7T95i67e1jp1ibLeXlKE+yvbbb8FBQXYsGEDMjIycOTIkSbrxcXFITk5GWlpaRg+fHi924G1B1d7/VqtVhQXF9sTZnU6HYqLi2Gz2Vq1vVwuR0REBMLDwxEREYGIiAgEBQV1cNRERNSUvLw8aLVamM1mAHdWW58xYwZXoCUiIiIiInJTrjYfWefatWtYv349TCYTgDvfX6dNm4YhQ4a0anvpf5JlveVShPkrOjJUIiIit+Oi6RJERERE1BS90YxzBfqWK+LObYsqaszwbufbxXcWvdHSprbqjRaXvGWRp7QTaNhWmwDkFlQ2WtfV29oRSkpKsGnTJmRkZOCrr75qcqXUnj17Ijk5GfPnz8eYMWPaPXH2bs78+rXZbCgpKamXMFtUVASr1dqq7WUyGcLDw+slzAYHB3fo35OIiFrv/Pnz2Lhxo/28LpFIkJqaitjYWAdHRkRERERERB3Fmecjm3Lp0iVotVpYLBYAgFgsxsyZM9GvXz+HxkVEROQp+GszERERkZspM5jbVL/cYG7X1S87U4XR1Kb6+hqzS16B7SntBDyrre2lrKwMW7ZsgVarxYEDB5pMAI2KisKECRMwZ84cPPzwwxCLO2d1BWfpU5vNhlu3btVLmC0sLLRPTLdEKpUiLCysXsKsWq3utL8jERG1zenTp7F161b7BSUymQxz585FTEyMgyMjIiIiIiKijuQs85GtlZubi40bN9rvhCWVSjF79mz06tXLYTERERF5GibREhEREbmZQG9Zm+oHtLG+M/FXyttUX6VwzbZ6SjsBz2rr/aisrMRnn30GrVaLPXv22G9R/VMRERFITk7G7NmzkZKSAqm0878COqJPBUHA7du36yXMFhQUNPl3+imxWNwgYVaj0UAikdx3bERE1PFOnDiBnTt32h8rFArMnz8fkZGRDoyKiIiIiIiIOoMrzTGfOnUKn332mf0CULlcjnnz5qFbt24Oi4mIiMgTMYmWiIiIyM2olDL0i1DhrK7l2xX1i1C5dBKiSiltW1uVrvnx11PaCXhWW9vKYDBg586dyMjIwK5du1BTU9NovZCQECQlJWHWrFmYOnUqZDLHvsc7uk8FQUB5eXmDhNna2tpWbS8WixESElIvYTYkJMQhCcdERHT/Dh8+jP3799sfe3t7Y+HChQgLC3NgVERERERERNRZXGWO+fjx49i1a5f9sUKhwIIFC9C1a1eHxENEROTJ+KsgERERkZuRSUR4ZmwMntfmtFh3ydgYyCSijg+qg8glYixNiMFz6Tkt1l2W0ANyiWvedt1T2gl4Vltbo7a2Frt370ZGRga2b9+O6urqRusFBQUhMTER06dPx2OPPQYvL69OjrRp7dmngiCgoqKiXrKsTqdrMqH4p0QiETQaDSIiIuxJs6GhoQ5PNCYiovsnCAK++OILHDp0yF6mUqmwcOFCqNVqB0ZGREREREREnckV5ph/egGoj48PFi5ciNDQ0E6PhYiIiJhES0REROR25FIJkvuGYv7IKKzPzm+y3oL4KCT1DYVc6rq3J5dKxEiKC0XaqCisO9p0W9NGRSMxLgRSF0249JR2Ap7V1qaYzWbs378fWq0WW7ZsgV7f+IoJ/v7+GD9+PB555BGkpqbCx8enkyNtnXvtU0EQUFlZ2SBh1mAwtPrYarXavrpsXcKsXN6227kREZHzEwQBu3fvRnZ2tr0sMDAQixYtQkBAgOMCIyIiIiIiok7nzHPMTV0AumjRIgQHB3daHERERFQfk2iJiIiI3JBEBCyfEoeR3YOw6tDlerct6hehwjNjY5DUNxQuvAitnbdciuWT4xDfPRgrs/IatHVZQg8kxoXAW+7aH309pZ2AZ7W1jtVqxZdffgmtVotNmzbh9u3bjdbz8fHBQw89hGnTpmH+/Pnw8/Pr5EjvTWv6dFSUN25cvVwvYbaqqqrVxwgKCqqXMBsWFuZUK/ISEVHHsNls2L59O3JycuxlISEhSEtLc5lxkoiIiIiIiNqXM84xC4KAPXv24NixY/YyXgBKRETkHNznV2ciIiIiAgBYrDbszS3CX3dfwBvT+0O79AHojWZUGMzw95ZBpZDhxLXbmPSPr/DSxD6Y1D/M5Vfz9JZLMal/GBLjQlBWXQu9wYxAXy+olDLIJWKXb1+du9upN1qgrzFDpZBBpZS6VTsBz+hTm82Gw4cPQ6vVYuPGjSgqKmq0nkKhwLhx4zB58mQsXLgQQUFBnRxp+7i7TwtKy5B/XQej/hbKSm/ghwMn8F1l4yvuNiYgIKBewmx4eDgUCkUHRk9ERM7IarVi8+bNOHfunL0sIiICCxYsgLe3twMjIyIiIiIiIkdzpjlmm82GHTt24OTJk/YyjUaDhQsX8gJQIiIiJ8AkWiIiIiI3Y7LasPLLy7heZsQTq49DKgZS+oUh2EeOW9Um7D1bCIvtTt2VWXmdfruijiKViCGCgIqCa5BIJNCE9YREInF0WO1O+p/JPW+5FGH+7p006I59KggCjh8/joyMDGRmZuLmzZuN1pPL5RgzZgwmTpyIxx9/HKGhoZ0cafsxGo32lWULCgpw8+ZNVFRUtHp7lUrVIGGWiVFERGQ2m5GZmYlLly7Zy6KjozFv3jyuRE5EREREREQAnGOO2Wq1YsuWLTh79qy9jBeAEhERORcm0RIRERG5Gb3RgnMFP67oaLEBu84UNlr3rE4PvdHSqbcs6mhGo9HRIVA7c/U+FQQBp06dglarhVarxZUrVxqtJ5VKMWrUKEyYMAFPPPEEunbt2smR3r/a2tp6CbM6nQ63b99u9fa+vr4NEmZ9fX07MGIiInJFNTU1SE9PR35+vr2sV69eSE1NhUwmc2BkRERERERE5IwcNcdssViwYcMGXLx40V4WFRWF+fPn8wJQIiIiJ+I+2RJEREREBACoMJraVF9fY3b7FU2JHOHcuXP2xNkLFy40WkcikWD48OFISUnBk08+ie7du3dylPfOZDKhsLCwXsJsaWlpq7eXyWTo0qULIiMj0aVLF0RERPDWZURE1CKDwYB169ahoKDAXta3b1/MnDnT5VesJyIiIiIiIvdhMpmQkZFRb1GFHj16YM6cObwAlIiIyMkwiZaIiIjIzfgr5W2qr1JwsoaovVy6dMmeOHvmzJlG64hEIgwZMgQpKSl4/PHH0adPn06Osu3MZjOKiorqJcyWlJRAEIRWbe/l5QW1Wg2NRoPQ0FAYjUb4+vpi6NChTHgiIqJWq6ysxNq1a1FSUmIvGzx4MKZNmwaxWOzAyIiIiIiIiIh+ZDQasX79ety4ccNe1qdPHzz22GOQSpmmQ0RE5Gw4OhMRERG5GZVSin4RKpzV6Vus2y9CBZWSHwmJ7se1a9eQmZkJrVaLb7/9tsl6AwcORHJyMhYtWoSBAwd2YoRtY7FYUFxcDJ1OZ0+aLS4uhs1ma9X2MpkMGo0GarUaYWFhiIqKQlhYmD1Z1mq1IicnpwNbQERE90OpVDrlBQ5lZWVYu3YtysrK7GXx8fGYMGECRCKRAyMjIiIiIiIi+lF1dTXWrl2LoqIie9nAgQPx6KOP8gJQIiIiJ8WMCSIiIiI3I5eIsTQhBs+l57RYd1lCD8glnLRxJRarDSarDXqjBRVGE/yVcqiUUsglYkjZl52moKAAGzZsQEZGBo4cOdJkvT59+iAlJQVpaWkYPnx4o0k+juxTq9WKkpISe8KsTqdDcXExrFZrq7aXSqX1VpiNjo5GeHi4UyZfdTa+V4nI1dw5bwnwD49GhcGEkioTVEqZU5y3SktLsWbNGlRWVtrLxo0bh4ceeqjNCbQ8PxMREREREVFH0ev1WLNmDW7dumUvGzZsGKZMmcILQImIiJwYk2iJiIiI3IxUIkZSXCjSRkVh3dH8JuuljYpGYlwIkwVciMFkwf7cIryXdbneSsP9IlRYmhCDpLhQeMv5Eb+jlJSUYNOmTdBqtcjKyoIgCI3W69GjB5KTkzF//nw8+OCDzU6Odmaf2mw2lJaW1kuYLSwsbHXCrEQigVqthlqtRmhoKKKiohAREQGZTNYu8bkTvleJyNU483mroKAA69atg8FgsJclJydj9OjRbd6XM7eTiIiIiIiIXNvt27exdu1alJeX28tGjx6NpKQkJtASERE5Oc4KExEREbkhb7kUyyfHIb57MFZm5TVIEliW0AOJcSFMEnAhBpMFb+3KbTQx+qxOj+fSc5A2KhrLJ/dhv7ajsrIybN26FRkZGThw4ECTCadRUVFISUnBnDlzMH78+Fbdlqsj+1QQBNy6datBwqzZbG7V9mKxGMHBwdBoNAgJCUFkZCQiIyOZMNsKfK8Skatx5vNWfn4+1q9fj9raWnvZ1KlTMWzYsDbvy5nbSURERERERK6tpKQEa9asQVVVlb3s4YcfxtixY5lAS0RE5AI4I0xERETkprzlUkzqH4bEuBDojRboa8xQKWS8Xa0Lslht2J9b1OzKwgCw7ug1xHcPwqT+Yezf+1BZWYlt27YhIyMDe/bsaTLxNDw8HCkpKUhNTcWECRMglbb+61V79qkgCCgrK6uXMFtQUACTydSqWEQiEYKDg6FWq+slzHp5ebW6PXQH36tE5Gqc+byVl5cHrVZrH4dFIhFmzJiBAQMGtHlfztxOIiIiIiIicm0FBQVYu3YtjEajvWzChAkYNWqUA6MiIiKitmASLREREZEbk/4nWdZbLkWYv8LR4dA9MlltWPnl5VbVXZmVh8S4ECZ+tJHBYMDOnTuh1Wqxc+dO1NTUNFpPo9EgOTkZjz32GKZNm3bPK7Pea58KgoCKiooGCbNNxftTIpEIgYGB9RJmo6KioFDw/NAe+F4lIlfjrOet8+fPY+PGjfYV4CUSCVJTUxEbG3tP+3PWdhIREREREZFra+wOKtOmTcPQoUMdGBURERG1FZNoiYiIiIicnN5owbkCfavqntXpoTdaeBviVqitrcXu3buh1Wqxbds2VFdXN1ovKCgIiYmJmD59Oh577LF2WaG1dX0qwBtmVBZew/4DRuhvFUOn09Vb0aAlAQEB0Gg0UKvViIyMRHR0NLy9ve8veGoS36tE5Gqc8bx1+vRpbN26FYIgAABkMhnmzp2LmJiYe96nM7aTiIiIiIiIXNtP76AiFosxY8YM9O/f38GRERERUVtxNpiIiIiIyMlVGE1tqq+vMXPl4SaYzWYcOHAAGRkZ2Lp1KyoqKhqtp1KpMH78eDzyyCOYPXs2fHx82jWOxvpUCTOCxdVQi6uhFhsQLK6Gt8gCADiZndfiPv39/aFWq6HRaNC1a1dER0fD19e3XeOm5vG9SkSuxtnOWydOnMDOnTvtjxUKBebPn4/IyMj72q+ztZOIiIiIiIhcW3vfQYWIiIgci0m0REREREROzl8pb1N9lULWQZG4JqvViqysLGRkZGDz5s24detWo/V8fHzw0EMPYerUqZg3bx78/f07LCa5YEEXcQXU4moEiw1Qi6vhIzK3enuVSmVPmO3SpQuio6OhUqk6LF5qHb5XicjVONN56/Dhw9i/f7/9sY+PD9LS0hAWFnbf+3amdhIREREREZFrO3PmDLZs2dKud1AhIiIix2ISLRERERGRk1MppegXocJZXcu3Ie4XoYJK6V4f80NCQiCXty35xWaz4ZtvvoFWq8WGDRtQVFTUaD2FQoGxY8diypQpSEtLQ3BwcHuEXI/RaERBQQF0Op39v4qKCqR4tW57k0iOnlERCA35MWE2ICCg3eOk++fp71Uicj3OcN4SBAFffPEFDh069GNcKhUWLlwItVrdLsdwhnYSERERERGR6/v222+xY8cO+2MvLy8sWLDgvu+gQkRERI7FGWEiIiIiIicnl4ixNCEGz6XntFh3WUIPyCXijg+qE9SarbDYBEj91LhlMMFWaYJKKYNULIKXTNKgviAIOHHiBDIyMpCZmYkbN240ul+5XI4xY8Zg4sSJWLRoUbuscFenpqbGnjBb9/+ysrJWb28UpCi3KVBuU6JU8Eah1Q9vzR2FyQPCIXWTfnVnnvpeJSLX5ejzliAI2L17N7Kzs+1lQUFBWLhwYbteMOLodhIRERERETkTk8UKs1WA3mhGmcGMQG8ZVEoZZBIR5NKG8650xzfffIN9+/bZH3t7e2PhwoXtOr9MREREjsEkWiIiIiIiJyeViJEUF4q0UVFYdzS/yXppo6KRGBfiFsmW1bUW7D1XhA8OXa63aly/CBWeHhuDlL6h8PGSQhAEnD592p44e/ny5Ub3J5FI8MADDyAlJQVPPPFEu6wMYDKZGiTM3rp1q9XbKxQKGMQ++EEvQqntTsKsHgoAInudtFHRSOob6hZ96gk88b1KRK7Nkectm82G7du3Iycnx14WEhKChQsXwtfXt92OA/D8TEREREREVKe61oJ954qwqpF512fGxiD5P/Ou9CNBEJCVlYWsrCx7mZ+fHxYtWtRud1AhIiIix+KnHyIiIiIiF+Atl2L55DjEdw/Gyqy8BhOcyxJ6IDEuBN5y1/+Ib6i14M2duVif3TDJ5axOjxe0OZjQxYLgom+xeWMmLly40Oh+xGIxhg8fjpSUFDz55JOIiYm555jMZjMKCwvrJcyWlJS0ensvLy9oNBqo1WqEh4ejW7duUKvVqLHYcCC3GCuz8qB34z71JJ70XiUi9+CI85bVasXmzZtx7tw5e1lERATS0tKgVCrb7Th34/mZiIiIiIg8XUvzrs9rc7AgPgrLJ8cxkfY/BEHA3r17cfToUXtZQEAAFi1ahMDAQAdGRkRERO2Jn3yIiIiIiFyEt1yKSf3DkBgXAr3RAn2NGSqFDCqlFHKJ2C1WTas1W7HnXFGjE7nmsgIYzh9Cde5XeL/kaqPbi0QiDBkyBMnJyVi0aBH69u3b5hgsFguKioqg0+nsSbPFxcUQBKFV28vlcqjVamg0GoSFhSE6OhqhoaEQixv2j7dc7PZ96ok84b1KRO7l7vNWWXUt9AYzAn29oFLK2v28ZTabkZmZiUuXLtnLoqOjMW/ePHh5ebXbcRrD8zMREREREXkqk8WKvU3Mu97t02P5GNktCJMGhEEulXRSdM7JZrNh586d+O677+xlarUaCxcuhEqlcmBkRERE1N6YREtERERE5EKk/0nw8JZLEeavcHQ47c5iE7Dqq8s/PtYXozr3axjOH4Kp8IcmtxswYIA9cXbQoEGtPp7VakVxcXG9hNmioiLYbLZWbS+TyaBWq6FWqxEWFoaoqCiEh4dDImn9BLO796mnYr8SkauRSsQQQUBFwTVIJBJownq2aTxrjZqaGqSnpyM//8cfbXv16oXU1FTIZLJ2PVZTeH4mIiIiIiJPZLYKeP+uedfmvH/oMpL7hsKTb9RhtVrx2Wef4cyZM/aysLAwpKWlwcfHx4GRERERUUfw4I89RERERETkbPRGM07/cBWGC4dhyP0KtTdzm6wrDeqKx1OnYclTT2DEiBEQiUTN7ttms6GkpKRewmxhYSGsVmurYpNKpQgODoZGo0FoaCgiIyPRtWvXdk8wIiIiciSj0dgh+zUYDFi3bh0KCgrsZX379sXMmTM5lhIREREREXUwvdGMcwX6VtU9q9OjosYMby/PTCexWCzYuHEjLly4YC+LjIzE/PnzoVDwYkwiIiJ35JmfeoiIiIiIyKmUlpZi06ZN+PCTT3HzyNcAhEbrSQPCoOg2BN59E6Do2g//9fw4xIU3vHWWzWbDrVu36iXMFhQUwGKxtCoeiUSC4OBgqNVqhIaGIioqCl26dOm0VfKIiIjcSWVlJdauXYuSkhJ72eDBgzFt2jSIxWIHRkZEREREROQZygzmNtUvN5gR7q/soGicl8lkglarxeXLP67a2717d8ydOxdyudyBkREREVFHYhItERERERE5RHl5ObZs2QKtVov9+/c3uSKsRKWBotsQ+PR5EIpugyES/ZhsE+AtgyAIuH37tj1hti5p1mxu3cSwWCxGUFAQNBoNQkJCEBUVha5du3JSlIiIqB2UlZVh7dq1KCsrs5fFx8djwoQJLa4iT0RERERERO0j0LttiwMEtLG+O6ipqcH69etx/fp1e1lsbCxmzZoFqZSpNURERO6MIz0RERF5tICAAK4s6WaUSiVvCezEKisrsW3bNmi1WuzevbvJRFexTyCU3YfAt89YDHpgHFTeClTVWnCxqBJKoRZqcTX6+Fnw+WYtiosKUVtb26rji0QiBAUFQa1WIyQkBJGRkYiMjORtuIiIiDpAaWkp1qxZg8rKSnvZuHHj8NBDDzGBloiIiIiIqBOplDL0i1DhrE7fYt1+ESqoFJ71u0l1dTXWrVuHwsJCe1n//v0xffp0/t5ARETkAZhES0RERB7JZLHCbBXgHRyBMoMJxZUmqJQyyCQiyKXuMyFS10690YwygxmB3jK3bCcAWKw2mKwC/MOjUWEwoaTqTp/KJWJIJe5zm2BX7FODwYBdu3YhIyMDO3fuRE1NTaP1NBoNxicmImroQ/hcH4mFY2LwaN9A6HQ63NTdhKGsFLeMRTDV/mf7WuB6ftPHFYlECAgIgEajgUajQdeuXREVFQVvb+8OaOW9c8U+JSIiaklBQQHWrVsHg8FgL0tOTsbo0aMdGBUREREREZFnkklEeGZsDJ7X5rRYd8nYGMgknnPhY2VlJdasWYPS0lJ72dChQzFlyhSIxe7z2wIRERE1jUm0RERE5HGqay3Yd64Iqw5drnfVdb8IFZ4ZG4PkvqHw8XL9j0me0k4AMJgs2J9bhPeyGrZ1aUIMkuJC4S13/ba6Up/W1tZiz549yMjIwLZt21BdXd1ovcDAQCQmJmLGjBlITk7G7du3ce36DfS5qYPu5BlkHGs84bYxAQEBUKvV9oTZ6Oho+Pj4tFeTOoQr9SkREVFr5efnY/369fVWip86dSqGDRvmwKiIiIiIiIg8l1wqQXLfUMwfGYX12U2vTLAgPgpJfUM95uL+srIyrF27FmVlZfayUaNGISUlhXdQISIi8iD8NZaIiIg8iqHWgjd35jY6SXRWp8fz2hwsiI/C8slxLp245intBO4k0L61Kxfrjjbe1ufSc5A2KhrLJ/dx6URaV+hTs9mMAwcOICMjA1u3bkVFRUWj9VQqFZKTk/Hwww+jd+/eKC0thU6nw7vvvtvqYwkyJbp3DUdoyI8Js35+fu3VlE7hCn1KRETUVnl5edBqtTCbzQDurAw/Y8YMDBgwwMGREREREREReTYfLyn+e0oc4rsH4f1GLupfMjYGSR50UX9paSnWrFmDyspKe1lCQgISEhKYQEtERORhPOPTDxERERHu3DJ977miZq+yBoBPj+VjZLcgTBoQ5pJXW3tKOwHAYrVhf25Rowm0d1t39BriuwdhUv8wSCWud/slZ+5Tq9WKrKwsaLVabNq0Cbdu3WpQx9vbG927d8eoUaPQs2dPyOVyVFZWorS0tN4tsppSbZOhQlCg3KZEseCDQqsvjEYvvDNoCJLYp0RERE7j/Pnz2LhxI6xWKwBAIpEgNTUVsbGxDo6MiIiIiIiIgDuJtJMGhCG5bygqaswoN5gR4C2DSiGDTCLymDnIwsJCrF27FgaDwV6WnJyM0aNHOzAqIiIichQm0RIREZHHMFsFvP/V5VbVff/QZST3DYUrLlzqKe0EAJPVhpVftq6tK7PykBgX4pIJl87WpzabDd988w20Wi02btyIwsJC+3MKhQLh4eGIiIhAZGQkunXrBoVCYX++tra23q2df8rbxwcFNTLoamQoFbxRYPVDNbwANLzyn31KRETkPE6fPo2tW7dCEAQAgEwmw7x589C9e3cHR0ZERERERER3k0slkEsBby8pwv2Vjg6n012/fh3r169HTU2NvWzq1KkYNmyYA6MiIiIiR+LPsEREROQx9EYzzhXoW66IO7dSr6gxw9sFb1vkKe0EAL3R0qa26o0WeLtgJqIz9KkgCDhx4gQyMjKQmZmJGzduQC6XIzw8HA888AAiIiIQERGB4ODgVu9TqVRCo9FAo9EgPDwc3bp1g0nijQf+fLBV27NPiYiInMOJEyewc+dO+2OFQoEFCxaga9euDoyKiIiIiIiIqL4rV64gMzMTZrMZACASiTB9+nQMHDjQwZERERGRI/FXWCIiIvIYZQZzm+qXG8wueRW2p7QTACqMpjbV19eYEeavaLmik3FUnwqCgNOnT0Or1WLTpk0wGo2IiIjAiBEj8Oijj0KtVkMkarhCbGMUCgU0Gg3UajXCw8MRHR0NjUbTYPsLha1LLK3DPiUiInKsw4cPY//+/fbHPj4+SEtLQ1hYmAOjIiIiIiIiIqqvqKgIn3/+OaxWKwBAIpFg1qxZ6NOnj4MjIyIiIkdjEi0RERF5jEBvWZvqB7SxvrPwlHYCgL9S3qb6KoVrtrWz+/T777/Hxo0b8e2330IikSAiIgJz586FWCxu1fZeXl5Qq9XQaDQICwtDdHQ0QkJCWrU9+7Rxrvw+JSIi9yQIAr744gscOnTIXqZSqbBw4UKo1WoHRkZERERERERUn06nw8mTJyEIAgBAJpNhzpw56NGjh4MjIyIiImfAJFoiIiLyGCqlDP0iVDira3mly34RKpdNzvOUdgKASiltW1uVrvnxtyP71Gq1oqioCKdOncLx48dRVlYGPz8/SCQSDB8+vMXtZTJZvYTZqKgohIWFQSKRtDqGu7FPG3L19ykREbkfQRCwe/duZGdn28uCgoKwcOFCBAQEOC4wIiIiF6JUKu/5uzMREXUsnqPdS05ODr777jv7Yy8vL8yfPx9RUVEOjIqIiIiciWv+4kxERER0D2QSEZ4ZG4PntTkt1l0yNgYySetuU+9sPKWdACCXiLE0IQbPpee0WHdZQg/IJa1bSdXZtFefWq1WlJSUQKfTQafT4dq1aygtLa1Xp7nEF7FYjJCQEGg0GoSGhiI6Ohrh4eHtOqHMPm3I1d+nRESuzGK1wWS1QW+0oMJogr9SDpVSCrlEDKmLjkH3y2azYfv27cjJybGXhYSEYOHChfD19XVcYERERC7izucLAf7h0agwmFBSZYJKKfPozxdERM6C52j3c/ToUezZs8f+WKlUIi0tDREREQ6MioiIiJwNk2iJiIjIY8ilEiT3DcX8kVFYn53fZL0F8VFI6hsKudQ1rzT3lHYCgFQiRlJcKNJGRWHd0abbmjYqGolxIS470XkvfWqz2VBaWmpPmC0oKEBhYSEsFkurjmmxWGC1WhEVFYW+ffsiOjoaERERkMk6dkVU9ml97vA+JSJyVQaTBftzi/Be1uV6K4f3i1BhaUIMkuJC4S33rKk1q9WKzZs349y5c/ayiIgIpKWlQalUOjAyIiIi18DPF0REzovnaPciCAIOHTqEL774wl7m5eWFRYsWISwszIGRERERkTPipzwiIiLyKD5eUvz3lDjEdw/C+4caToYtGRuDpL6h8PFy7Y9JntJOAPCWS7F8chziuwdjZVZeg7YuS+iBxLgQl5/glIiA5VPiMLJ7EFb9tE/D/bBwSDBifEz4Yv9eFBcVorCwEGazuVX7tlgsKCwsRGVlJTQaDcaPH48pU6ZALpd3VHOaJQLw3PheGBwZgNWHrzbo0yfHdMO4Xhq4+tqszfZphArP/Od9ykVoiYg6n8FkwVu7chu9oOOsTo/n0nOQNioayyf3cfnPGK1lNpuRmZmJS5cu2cuio6Mxb948eHl5OTAyIiIi18DPF0REzovnaPciCAL279+Pb775xl6mVCoxatQoaDQaB0ZGREREzoqf8IiIiMjj+HhJMWlAGJL7hqLCaEa50YwAbxlUChlkEpHbrPhYr501ZpQb3LOdwJ1E2kn9w5AYF4Ky6lroDWYE+nq5za22LFYb9uYW4a+7L+APj/bDytmxuHrtBm7c1KHydjFulZzGhS9MuNCKfVmtVhQVFdlXqLVarRg6dCjmzZuHxMREiMWO/VtZrDbsyy3C61vPYkF8FN5fNBw1JivKDCYEesvhJRNj/bF8vLEjF3+c3h+T+oe5ZP/e3advTO8P7dIHoDeaUWEww/8/79MT125j0j++wksT+7hsO4mIXJHFasP+3KJmV0QHgHVHryG+e5BHnKNramqQnp6O/Pwf/ya9evVCampqh69ST0RE5A74+YKIyHnxHO1eBEHArl27cOLECXtZcHAwBg8ezDuoEBERUZOYREtEREQeSS6VQCKywnBLBx+ZDCG+XSCRuE9SaR25VAK5FPD2kiLc370niKQSMUQQUFFwDRKJBJqwni7fp4IgoKKiAlfyr2Pn5yfQ11CGfRnf4CuRtVXb22w2FBcX2xNmdTodiouLodFokJycjKVLl2LixImQSp3na4HJasPKLy+jwmjGu1/mYWVWHmLD/ODrJUVVrQUXCithE+7UXZmVh8S4EJectK5r5/UyI55YfRxSMZDSLwzBPnLcqjZh79lCWGx36rpyO4mIXFHdObo1POEcbTAYsG7dOhQUFNjL+vbti5kzZ7r8Zy0iIqLOws8XRETOi+do92Gz2fDZZ5/h9OnT9rLQ0FDMnz8fP/zwgwMjIyIiImfnPL+WExERETlAeXk5AKBLly6ODYTajdFodHQI90QQBFRWVtZLeNXpdPb2RABAM3kqgiCgpLQUups37dsWFRXBbDYDADQaDZKSkjBz5kw8+uijTrtqnN5owbkCvf2xTQByCyobrXtWp4feaHHJW6j9tJ0WG7DrTGGjdV25nUREruin5+jmuPs5urKyEmvXrkVJSYm9bPDgwZg2bZrDV68nIiJyJfx8QUTkvHiOdg8WiwWbN29Gbm6uvaxr166YP38+5HK5AyMjIiIiV8BPd0REREREDlBVVdUgYba6urrV21fU2lBYWISrF8/i5vV8FBYWwmQy1asTGBiIxMREzJgxAzNnzoRCoWjvZrS7CqOp5Up30deYEebv/O36KU9pJxGRK+I5+o6ysjKsX78eZWVl9rL4+HhMmDABIpHIgZERERG5Hn6+ICJyXjxHuz6z2QytVou8vDx7Wffu3TF37lzI5XJYra27sxsRERF5LibREhERERF1sOrqahQUFNRLmK2sbHx11cb4+PrhQrmAolvluHL+e+R9mwWjvqzRuiK5N1KSxmP2YzMwZ84c+Pj4tFczOoW/sm2rAqgUzrmibks8pZ1ERK6I5+g7F/usWbOm3ueVcePG4aGHHmICLRER0T3g5wsiIufFc7Rrq62txfr165Gfn28v6927N1JTUyGVMh2GiIiIWoefGoiIiIjIrYSEhDj09kxGo7FBwmxFRUWrt/f19YVGo4FarUZYWBh0Oh22bP0MazM2wFzd+H5EMi94RQ6AsscIDB8/DZt/neyytxRTKaXoF6HCWV3Lt1DrF6GCSsl2EhFR+/L0c3RFRQWOHTtWb4X75ORkjB492oFRERERuTZP/3xBROTMeI52XQaDAZ9++il0Op29rF+/fpgxYwYkEokDIyMiIiJXw094RERERG7MYrXBZLVBb7SgwmiCv1IOlVIKuUQMqUTs6PDaVa3ZCotNgNRPjVsGE2yVJqiUMkjFInjJOmbCrLa2tkHC7N23PG6Jj48P1Go11Go1unTpgujoaPj7++Po0aPIyMjAxo0bUVhY2Oi2ci8vDB7xAJJTJmLOvPnYnWfAuqPX8MtJ/SF34b6VS8RYmhCD59JzWqy7LKGHy7bVU9pJROSKPPkcff36dRw5cgQWi8VeNnXqVAwbNsyBUREREbk+T/58QUTk7HiOdk2VlZVYu3YtSkpK7GWDBw/GtGnTIBazj4iIiKhtmERLRERE5KYMJgv25xbhvazL9a6i7xehwtKEGCTFhbrsaqU/VV1rwd5zRfjgUMO2Pj02Bil9Q+HjdX9tNZlMKCwsrJcwe+vWrVZvr1QqoVarodFoEB4ejujoaKjVaohEIgiCgBMnTuCtt96CVqvFjRs3Gt2HTCZHr4FDYY0YjKqo0SjyDcK6auDkrqt4YnQ37HthHPwUUpdOkJZKxEiKC0XaqCisO5rfZL20UdFIjAtx2bZ6SjuJiFyRp56j8/LyoNVq7Qm0YrEY06dPx4ABAxwcGRERkevz1M8XRESugOdo11NeXo61a9fi9u3b9rL4+HhMmDABIpHIgZERERGRq3KPrAkiIiIiqsdgsuCtXbmNTvqd1enxXHoO0kZFY/nkPi6fSGuoteDNnblYn914W1/Q5mBBfBSWT45rdSKt2WxGUVFRvYTZ0tJSCILQqu29vLyg0WigVqvtCbMajabeFfCCIOD06dPQarXQarW4fPlyo/uSSCQYNWoUHk5KQnmXMdied+fWyne35KxOj99sPG3vU1fnLZdi+eQ4xHcPxsqsvAaJ0csSeiAxLsTlX7ue0k4iIlfkaefo8+fPY+PGjbBarQDuJNDOmjULcXFxDo6MiIjIfXja5wsiIlfCc7TruHXrFtasWQO9/sc+Gjt2LB5++GEm0BIREdE946c8IiIiIjdjsdqwP7eo2avmAWDd0WuI7x6ESf3DXPbq+VqzFXvOFTWaQHu3T4/lY0S3O231kknqPWexWFBcXFwvYba4uLjVCbNyudy+wmxYWBiio6MREhICiUTSaP3c3Fx74uz58+cbrSMWizF8+HCkpKTgiSeeQHS37tj1fUGLtxRzhz6t4y2XYlL/MCTGhaCsuhZ6gxmBvl5QKWWQS8Qu3746d7dTb7RAX2OGSiGDSil1q3YSEbkiTzlHnz59Glu3brV/9pFIJBgxYgR69+7t4MiIiIjcj6d81yUickU8Rzu/oqIirF27FtXV1faypKQkjBkzxoFRERERkTtgEi0RERGRmzFZbVj5ZeOrmv7Uyqw8l74FlcUmYNVXrWvrqkOXkRirxu3SHxNmCwoKUFRUBJvN1qp9yGQyqNVqqNVqhIaGIjo6GuHh4U0mzNapuz2yVqvF6dOnG60jEokwePBgpKSkYNGiRejbt6/9OYPJ4jF9ejepRAwRBFQUXINEIoEmrGeLf2tXJP3PJLy3XIowf4WjwyEioru4+zn6xIkT2Llzp/2xQqHAsGHDEBgY6MCoiIiI3Fvdd92bP5yFXq9H9wcfhIIrGxIROQVPmY90RTdu3MCnn36Kmpoae9nkyZMxYsQIB0ZFRERE7oLfyomIiIjcjN5owbkCfcsVAZzV6aE3Wlz2NlR6o7nJtoogIEBkRLDYALW4GupbBvzz7Sz7bYpbIpVKERwcDI1Gg9DQUERGRqJr166tnjS9fv06MjMzkZGRgRMnTjRZr3///vbE2UGDBjVax5P6tDFGo9HRIRAREbmdw4cPY//+/fbHPj4+mD9/PgoKChwYFRERkWfIycnB7t27IQgCqqqqMH36dEeHREREd+F8pHO5evUq0tPTYTKZANxZkOLRRx9tcj6diIiIqK3c55d1IiIiIgIAVBhNbaqvrzG77MpqZQYzgDsJsypRDdT/SZgNFlUjWGyEVFR/hdmm8mclEgmCg4OhVqsREhKCqKgodO3aFTKZrE3xFBYWYsOGDdBqtTh8+HCT9WJjY5GcnIy0tDSMHDkSIpGo2f16Up8SERFRxxIEAV988QUOHTpkL1OpVFi4cCECAwOZREtERNSBBEHA/v378c0339jLKioqHBgRERGRc/vhhx+QmZkJi8UCABCLxZg1axbi4uIcHBkRERG5E5dJor19+zZWrVqFgwcPQqfTQaFQYODAgXj66afxwAMPNKj/zTffYNWqVTh//jxqamoQExODuXPnYtasWS0mKRARERG5Mn+lvE31VYq2JYo6miAIuH37NnQ6HX64ko9J8vMIFhsg+0nCbFPEYjGCgoKg0WjqJczK5W37u9UpLS3Fpk2boNVq8eWXX0IQhEbrxcTEICUlBfPnz8eDDz7Yps+k7t6nRERE1DkEQcDu3buRnZ1tLwsKCsLChQsREBDQ6hX7iYiIqO1MJhO2bNmC8+fP28u8vLyQnJzswKiIiIic19mzZ7F582bYbHfm/qVSKebMmYOePXs6ODIiIiJyNy6RRHv58mU8/vjjKC4uRpcuXZCQkIAbN27g66+/xuHDh/Gvf/0LKSkp9vrp6en4/e9/D5lMhvj4eMhkMhw9ehSvvfYavvvuO/zpT39yYGuIiIiIOpZKKUW/CBXO6vQt1u0XoYJK6bwfCQVBQHl5OXQ6HXQ6HQoKCqDT6VBbW2uvEyZpenubAFQKXii3KSH18ccvp41Crx7doFDc3yqt5eXl2Lp1KzIyMrB///4mE04iIyORkpKCOXPmIDExEWKx+J6O5059ei+USiUkkmY6moiIHILnZ9dis9mwfft25OTk2MtCQkKwcOFC+Pr6Oi4wIiJqFY67rq2yshLp6en1Vnz38/PDiBEjEBoa6sDIiIiInFNOTg62bdtmX7RCLpdj/vz5iI6OdnBkRERE5I6c/td1i8WCX//61yguLsaiRYvwyiuv2CeKtm7dipdffhmvvPIKEhIS4OXlhStXruCNN96Ar68v1q5di759+wIAdDodHn/8cWzevBkJCQmYOHGiI5tFRERE1GHkEjGWJsTgufScFusuS+gBueTeEjvbmyAI0Ov1DRJmjUZjK7evS5hVoFxQoNjmiyKbH0z/+cj7jwmD0bt3GLxk9/ajY2VlJbZv346MjAzs2bMHJpOp0Xrh4eFITk5GamoqJk6cCKn0/j9yu2qf3i+L1QaTVYB/eDQqDCaUVJmgUsogl4ghdZM2AnXttEFvtKDCaIK/Ug6VUup27SQi9+Ep52d3YrVasXnzZpw7d85eFhERgbS0NCiVSgdGRkRELeG46/oKCgqQnp6OyspKe1nPnj3Ro0cPyGS8kwwREdFPZWdn4/PPP7c/ViqVWLBgAbp06eLAqIiIiMidOX0S7b59+5Cbm4thw4Zh+fLl9W57O336dOzcuRNXrlxBbm4uBg8ejA8++ABWqxWLFy+2J9ACd34Y+O1vf4unn34aH3zwAZNoiYiIyG1JJWIkxYUibVQU1h3Nb7Je2qhoJMaFOOxHt8rKygYJs9XV1a3ePiAgAGq1GgFBwThaCGReMKIW8kbrpsVHI7lvaJsTaI1GI3bu3AmtVosdO3agpqam0XpqtRrJycmYOXMmHn300Xb/EcxV+rQ9GUwW7M8twntZl+utwNsvQoWlCTFIiguFt9zpv860yFPaSUTug+ct12M2m5GZmYlLly7Zy6KjozFv3jx4eXk5MDIiImoJx13Xd+HCBWzatAlms9leFh8fj8TERJw+fdqBkRERETmnQ4cO4eDBg/bHPj4+WLRoEUJCQhwYFREREbk7p59dqbvCaPHixfUSaOusWrWq3uMvvvgCAJCSktKg7ujRo+Hn54czZ86gqKiIt8ghIiIityUC8Nz4XhgcGYDVh682+LHtyTHdMK6XBg0/XXWM6urqBgmzd6/A0hKVSgWNRgO1Wo0uXbqgW7du8PPzAwAYTRaMqLFg0A8lzbZV3MrG1tbWYs+ePdBqtdi2bRuqqqoarRcYGIjExERMnz4dM2fO7PBV3LzlUiyfHIf47sFYmZXXoJ3LEnogMS7ELX5ANZgseGtXbqMJw2d1ejyXnoO0UdFYPrmPS7fXU9pJRO6D5y3XU1tbi/Xr1yM//8c+69WrF1JTU7nyHRGRk+O469oEQcCRI0ewb98+e5lIJMKkSZMwYsQIWK1WB0ZHRETkfARBwIEDB3D48GF7mb+/PxYuXIjg4GAHRkZERESewOlnVr7//nsAwJAhQ1BeXo5du3bh/PnzkEqlGD58OCZMmACJ5M6KYqWlpbh16xZkMhliYmIa7EsikSAmJganTp3ChQsXmERLREREbslitWFfbhFe33oWC+Kj8P6i4agxWVFmMCHQWw4vmRjrj+XjjR25+OP0/pjUP6xdVy41GAz2RNm6/1dUVLR6e19fX3vCbNeuXREdHQ1/f/9G67ZXW81mMw4ePIiMjAxs2bKlyXj9/Pwwfvx4TJs2DXPnzoWPj0+r29UevOVSTOofhsS4EOiNFuhrzFApZFAppW5zK0+L1Yb9uUXNrrgLAOuOXkN896B2f/12Fk9pJxG5D563XI/BYMC6detQUFBgL+vbty9mzpxpn0sjIiLnxHHXtVmtVuzcuRMnT560l3l5eWHWrFno2bOnAyMjIiJyToIg4PPPP8fx48ftZUFBQVi0aFGTvw0QERERtSenTqI1mUy4efMmpFIpLly4gBdeeAFlZWX25z/99FP07dsXK1euRGhoKIqLiwHcuZ2uWNz4hFHdMv91dduLIAjtcuXw3fvglcjugX3qftin7od9ev86+0d4jrvNM1kFrPzyMiqMZrz7ZR5WZuUhNswPvl5SVNVacKGwEjbhTt2VWXlIjAuBCMI9HaumpgYFBQX1/isvL2/19j4+PlCr1VCr1QgPD0dUVBQCAwMb3IGgqf65n7ZarVZ89dVXyMzMxObNm3Hr1q1Gj+Ht7Y2EhARMmTIF8+bNqzdp54jXjQiAl0QEja8MGt+7V5Brn/eFo9X1aWvc7+vXkTylnY1x13NvZ3LFcZf97vo8+bzliiorK/Hpp5+itLTUXjZo0CBMmTIFQNPvQ75X3Q/79P5x3CVH4LjruoxGIzZt2oSrV6/aywICAjBnzhxoNBr7e5LvU/fDPr1/rjjmAux7d8Q+7Vw2mw07duzA6dOn7WUhISGYP38+fH19+T6lRrFP7x8vsCYiqs+pk2jrbp0rCAJ+9rOfYcCAAXjppZfQvXt3XLx4EW+++SbOnDmDZ599Fhs2bIDBYAAAKBSKJvfp5eUFAPa67cVoNCInJ6dd93nmzJl23R85HvvU/bBP3Q/79N4MGzasU4/HcbdpSqUS/uHROFegt5fZBCC3oLLR+md1epRV16Ki4BqMRmOz+7ZYLKioqEBFRQXKy8tRUVGB6urqVscmk8ng6+sLPz8/+Pv7Izg4GD4+PvUSZvPz8+vdbrg599LWW5VGZH3+GXbs2IH9+/c3mTgrl8sxZMgQjBkzBpMnT0ZAQAAA4MqVK61sLd2Lxvq0OW15/ToTT2lna7jLubezufq4y353PTxvuRaDwYCjR4/Wm/vq3r07unbtWu9HyZbwvep+2Kf3huMudTaOu66ruroa2dnZ9eZKAgMDMXz4cNy8eRM3b95sdDu+T90P+/TeuPqYC7Dv3RH7tGPZbDacPHmy3h1UAgICMHjwYFy6dKlDjsk+dT/s03vT2eMuEZGzc+okWpPJBODOlSNdu3bFhx9+CJnszmpbQ4YMwerVqzFp0iScPXsWe/fuRWhoKAA0WLmsMYLAq7KJiIjI/UgkElQYTG3aRm8wN7ji1Gq1NkiYrbvAqTWkUin8/Pzg6+sLf39/BAUFwdfXt8m7BdyL1rZVEASYCi/BkPsVRq5dikJd4z9ayWQyDBw4EA888ACmTJkCjUbTbrFS67TX69fZeUo7ich98LzlOqqqqnD06FHU1NTYy3r16oXevXu3ar6MiIgcj+Oua7p16xZOnDgBs9lsL4uIiMCgQYPYN0RERI2wWq04ceIESkpK7GVBQUEYOXIkpFKnTmMhIiIiN+TUnz7uXlF23rx59gTaOn5+fpg2bRo++ugjHDlyBAsWLACAej8U/FRtbS2AO7flbU9KpRKxsbH3vR+r1Wq/UmbAgAGcXHED7FP3wz51P+xT18Nxt3klVW37sc1PIYHNqkR5eTkKCgpQUFCAkpKSVl90JJfLoVaroVarERYWhqioKISEhLRrwmxTmmqrIAgwl1xFde5XMJw/BEt5IQDgp+v4SCQSxMfHIzk5GU888QQiIyM7OGJqSVtfv4G+XtCE9eygaDqOp7SzMe567nVn7THust9dnyeft1xFYWEh1q9fX29eLCkpCaNGjWr1PvhedT/sU9fDcZcAjruu5tSpUzh27BhsNpu9bNy4cRg7dmyTF7Hwfep+2Keuh3PM1BT2acerra2FVqutl0Dbo0cPzJo1q0FOSHtgn7of9ikREbU3p06i9fPzg1wuh8lkQteuXRutU1deVlZmX4m2tLQUgiA0OjlRXFwMAAgJCWnXWEUiUbsPzBKJhIO9m2Gfuh/2qfthn7oGjrvNUyll6Behwlldw1s/imFDoMiIYLEBanE1unrVYPW739X7oac5MpkMarUaGo3GnjAbFhbmsL/dT9tqvnUd1bmHUJ37FSy3bzS6jVgsxvDhw5GSkoInnngCPXr06MyQqQXNvX5/ql+ECiqlzCXfu57Szpa407nXnbX3uMt+d008bzm3/Px8rF+/3n7xOABMnTr1vm7Nx/eq+2GfugaOuwRw3HUVgiDg4MGD+Prrr+1lEokE06dPR//+/Vu9H75P3Q/71DVwjplag33a/oxGI9avX4+bN3+8Y1xcXBwee+yxTvlbs0/dD/uUiIjag1Mn0UokEvTq1Qtnz55FUVFRo3VKS0sB3FnaPyAgAKGhoSgqKsK1a9fQrVu3enWtVisuX74MAO1yZSERERGRM5JLxFiaEINfpZ9EgMgItdiAYHE11OJqBImMkIjuWmHWCjSVPiuVSu0rzIaGhiI6OhoRERFONRkhl4jxaA8JvtmUiercr2AuudpETRFi+vTDzGmT8eQTj6Nv376dGSa1Qd3r97n0nBbrLkvoAbmk41c87gie0k4ich88bzmvvLw8aLVa++2jxWIxpk+fjgEDBjg4MiIiulccd52f2WzGli1bkJubay/z8fHB3Llzm1wUhoiIyNNVVVVh7dq19oXPAGDQoEF45JFHOuXOdkRERERNceokWgB46KGHcPbsWWzbtg2pqan1nhMEAV999RUAID4+HgCQkJCAzMxM7N27F0uWLKlX//Dhw6isrESfPn0QFhbWOQ0gIiIi6gQ2mw2lpaXQ6XQoKChA0c2beNy7ACKhdSvMSiQSBAcHQ6PRICQkxJ4w2xG3TmoP169fR2ZmJrRaLY4fP95kPZk6GopuQzB73nz86xcz4C13+o+/Hk8qESMpLhRpo6Kw7mh+k/XSRkUjMS4EUhf9sdhT2klE7oPnLed0/vx5bNy4EVarFcCdz3Spqam8eJyIyMVx3HVulZWVyMjIgE6ns5eFhIRg3rx5CAgIcFxgRERETqyiogJr1qzB7du37WUjRozApEmTGr3DMBEREVFncvosgrlz52Lt2rXIzs7Gv//9b/z85z+HSCSCIAj417/+he+//x6RkZFISkoCACxYsACbNm3Ce++9h5EjR2Lw4MEAAJ1OhzfeeAMAsHTpUkc1h4iIiOi+CYKAW7duQafT2ZNmCwoK7KuP1Wlq2skGEbz9/BEVEYaI8DBERkYiMjLSaRNm6xQWFmLDhg3QarU4fPhwk/WkQV2h6DYYPv0extBhw/HsQz2RGBfCBFoX4i2XYvnkOMR3D8bKrLx6tzDtF6HCsoQebtGnntJOInIfPG85l9OnT2Pr1q0QhDt3GZDJZJg3bx66d+/u4MiIiKg9cNx1ToWFhUhPT4de/2N/9OzZE7NmzYKXl5cDIyMiInJet2/fxpo1a1BRUWEvGzNmDBITE5lAS0RERE7B6WdXQkJCsGLFCvzyl7/EO++8g88++wyxsbG4ePEirl27Bn9/f7z99tuQy+UAgD59+uD555/HihUrMH/+fIwcORIKhQLHjh2DwWBAamoqJk+e7OBWEREREbWOIAgoKyurlzCr0+lgMplatb1IJEJgYBBUgUHw9g9EdFQ0esVEw89b6RIr1ZSWlmLTpk3QarXIysqCzdb4yroxMTFISkrGrNlzEDdkBCqNFgT6ekGllEEuEbtEW6k+b7kUk/qHITEuBGXVtdAbzG7Zp3e3U2+0QF9jhkohg0opdat2EpH78JTzs7M7ceIEdu7caX+sUCiwYMEC3j6aiMjNcNx1LhcuXMCmTZvqXcQ8YsQITJw4kbegJiIiakJxcTHWrl2Lqqoqe9n48eMxduxYB0ZFREREVJ/TJ9ECwLhx47Bt2zasXLkS33zzDb788kuo1WqkpqZi6dKliIyMrFd/yZIl6NGjBz7++GOcPn0aIpEIPXr0wLx58zBjxgwHtYKIiIioeYIgoKKiokHCbE1NTau2v5MwGwi1Wg2NRoPIyEhER0dDoVB0cOTtq7y8HFu3bkVGRgb2799vvz3xT0VGRiI5ORlz585FYmIixGIxrFYrLly4AIlEAk1YT0gkkk6OntqTVCKGCAIqCq65dZ9K//Pjt7dcijB/13q/EpFn8pTzs7M6fPgw9u/fb3/s4+ODtLQ0hIWFOTAqIiLqKBx3HU8QBBw9ehR79+61l4lEIkycOBEjR450YGRERETOTafTYd26dTAajfayiRMnIj4+3oFRERERETXkEkm0ABAdHY0//elPra6fmJiIxMTEDoyIiIiI6N4JgoDKysoGCbMGg6HV+wgICGiQMOvt7d2BUXecqqoqbNu2DVqtFrt3725ypd2wsDAkJydj9uzZmDhxIqTShh9n756QI/fAPiUick48P3cuQRDwxRdf4NChQ/YylUqFhQsXQq1WOzAyIiLqDBx3HcNqtWLXrl347rvv7GVyuRypqano2bOnAyMjIiJybteuXcP69evtc/0ikQjTpk3DkCFDHBwZERERUUMuk0RLRERE5MqqqqoaJMzeffuilqhUKmg0GqjVakRGRiIqKgp+fn4dGHHHMxqN2LlzJ7RaLXbs2NHkirtqtRrJycmYMWMGpk+fDplM1smREhERETmWIAjYvXs3srOz7WVBQUFYuHAhAgICHBcYERGRG6upqcGGDRtw+fJle5m/vz/mz5+PkJAQB0ZGRETk3C5dugStVguLxQIAEIvFmDlzJvr16+fgyIiIiIgaxyRaIiIionZmMBgaJMzq9fpWb+/n52dPmO3SpQu6desGlUrVgRF3ntraWuzZswdarRbbtm1rMpE4ICAASUlJmD59OmbOnAmlUtnJkRIRERE5B5vNhu3btyMnJ8deFhISgoULF8LX19dxgREREbmx27dvIz09HaWlpfayrl27Ys6cORx/iYiImpGbm4uNGzfCZrMBAKRSKWbPno1evXo5ODIiIiKipjGJloiIiOg+GI1Ge6Js3f/Ly8tbvb2vry/UajU0Gg0iIiLQrVs3t1tNzGw24+DBg8jIyMCWLVtQUVHRaD0/Pz88/PDDeOSRRzB37lz4+Ph0cqREREREzsVqtWLz5s04d+6cvSwiIgJpaWm8yIiIiKiDXLt2DVqtFkaj0V7Wv39/PPLII7w7DhERUTNOnTqFzz77DIIgAADkcjnmzZuHbt26OTYwIiIiohYwiZaIiIiolWpraxskzN6+fbvV23t7e9tXmI2IiEB0dDSCgoIgEok6LGaL1QaT1Qa90YIKown+SjlUSinkEjGkEnGHHddqteKrr76CVqvFxo0bcevWrUbr+fj4YNy4cZg6dSoWLFgAf3//DouJiIiIqK0c9VkKuHMhUmZmJi5dumQvi46Oxrx58+Dl5dWhxyYiIvJUp06dwvbt22G1Wu1lCQkJSEhI6ND5GyIiIld3/Phx7Nq1y/5YoVBgwYIF6Nq1qwOjIiIiImodJtESERERNcJkMqGwsBA6nc7+X1OJoI1RKBTQaDTQaDQIDw9HVFQUNBpNp/7gYjBZsD+3CO9lXcZZnd5e3i9ChaUJMUiKC4W3vP0+DtpsNhw5cgRarRYbNmxAYWFho/W8vLwwbtw4TJo0CQsXLoRarW63GIiIiIjaS2d/lrpbbW0t1q9fj/z8fHtZr169kJqayhXwiIiIOoAgCPjiiy9w6NAhe5nk/7P352FRpfnd+P+uFQqwQEQ2FWRxQdR2a0FbRGVRcEERqHK3k8x051m6p5M8WToz32/y5Dczvyw9k+SZTLpnJk8mQkMdQMTdVlvFrXFt3AAXUFFZFBcKpKCoqvP9w/GMtIWyVxW8X9c11zXc9aHO5+5TWOc+53Pft0KBtLQ0TJs2zYGZEREROb9Tp07h8OHD0s+enp7YtGkTAgICHJgVERERUfexiJaIiIiGPavVivv376OhoUEqmG1sbJS2HHobNzc3+Pn5dSqY9ff3h1w+sKuTvUmr2YKf7KtATmnNa69dqzXio7wybIwNxaepk/tU/CGKIs6fPw9BEJCfn4979+7ZjVOpVJg/fz5SUlKwefNmBAUF9fqYRERERANtsK6l7B67tRVffvklamtrpbYpU6YgPT0dCoWiX49FREREL1Z/Ly4uRnl5udTm4eEBvV6PcePGOTAzIiIi52ZvEopWq+XiGURERORyWERLREREw9adO3dw4sQJGI3GbhfMqtVq+Pn5wc/PD4GBgQgNDUVgYKBDC2a/y2K14XBFg92ij1fllN5FTJgvUqYG9mg7YlEUceXKFRgMBgiCgOrqartxCoUCMTExWLp0KbZu3YqQkK4a9bAAAOYASURBVJAe9YOIiIjIEQb6WupNmpubkZ2djUePHkltM2bMwMqVK53qepOIiGioaGlpgcFgwIMHD6S20aNHY926dRg5cqQDMyMiInJuoijiq6++wpkzZ6S2kSNHYvPmzfDx8XFcYkRERES9wCJaIiIiGra++uorNDU1dfm6SqXCqFGjMHr0aAQGBiIkJARBQUFOvwKY2WrD58fsF7Z+1+clVUiI8u9W4UdlZSUEQYDBYEBlZaXdGLlcjjlz5iApKQnvv/8+IiIiepQ7ERERkaMN1LXU2zx9+hTZ2dl4+vSp1PZyQpJMJuvz+xMREVFnDQ0NyMvL63RvKCIiAhkZGXB3d3dgZkRERM7NZrNhz549+Pbbb6W20aNHY9OmTRgxYoQDMyMiIiLqHRbREhER0bAVEBAgrfKlUCikFWYDAgIQEhKCMWPGQKl0vcslo8mC8jpjt2Kv1RphNFm63Ia4urpaKpy9fPlyl+8zY8YMJCcnY8uWLZgyZUqv8iYiIiJyBv15LdVdjY2N2LZtG5qbm6W2hQsXYtGiRSygJSIiGgA3btzA9u3bYTabpbY5c+YgJSWFq78TERG9gdVqxY4dO3Dt2jWpLSgoCBs3boSHh4cDMyMiIiLqPderCiEiIiLqJytXroSnpydkMhni4+OHzCojTSbz24NeYWzrQKD37/t+79495OfnQxAEnDt3rsvfi46ORnJyMjZv3owZM2b0Nl0iIiIip9LXa6meqqurQ05ODlpbW6W2pKQkzJ8/v9fvSURERPaJoogzZ87g4MGDEEURACCTybB06VLMnTuXk1eIiIjewGKxoKCgADdu3JDaQkJCsG7duiHzfIWIiIiGJxbREhER0bClUCgwevRoAIBKpXJwNv3HW6PuUbzWXYX6+noUFBRAEAScOnWqy9iJEyciOTkZGzZsQExMDB8uERER0ZDTm2up3qqpqUFubi7a29ulthUrVmD27Nm9fk8iIiKyz2azYf/+/Th//rzUplarkZGRgQkTJjgwMyIiIudnNpthMBhw+/ZtqS0iIgI6nW5IPV8hIiKi4YlFtE5Io9FAoVA4Og0iIiJyUVqNEtHBWlyrffM2xNbWJvg0XIRu9T/h5PHjsNlsduPCwsKQnJyM9evXY8GCBdzWkIiIiIa07l5LAUB0sBZaTe9ur1VVVUEQBHR0dAAA5HI5Vq9ejWnTpvXq/YiIiKhrbW1tKCwsRFVVldTm7e2NdevWISAgwIGZEREROT+TyYTc3Fzcv39faps8eTLWrl0LpZIlJ0REROT6eEXjRCxWG8xWEd5BoWhqNeNRixlajQpqhRxKBYtViIiIqHvUCjk+iA/HR3llr71ma2tB681SPK84jrY7Zbgv2i+cHTt2LJKTk6HT6ZCQkMAJPkQD6MU4wAajyYImkxneGjW0GiXHAUREDvKma6nv+jA+Aupe/FtdWVmJwsJCWK1WAC92SMjMzMSkSZN6/F5ERET0Zk+fPkVubi4aGxultjFjxkCv18PLy8uBmRERETm/58+fIycnB/X19VLb9OnTkZaWxgU3iIiIaMhgEa2TaDVbcLiiAV+UVHda6SQ6WIsP4sORGBUADzVPFxEREb2dUiFHYlQANsaGIKe0BjazCaZbZ/C84gRMty8AVovd3wsMDERSUhIyMzORkpLCGeREg4DjACIi5/Pda6mubIwNRUKUf48nPFy+fBnFxcUQRREAoFKpsG7dOoSFhfUpbyIiInpdTU0NBEFAa2ur1BYdHY20tDRuPU1ERPQWRqMR2dnZnSaizJ49G8uXL4dMJnNgZkRERET9i09jnUCr2YKf7Kuw+2DmWq0RH+WVYWNsKD5NncwH6ERERNQtbSYTwoxXEHT+S5w9fhi2DrPduFF+fkhKTER6ejpWrVoFNze3Qc6UaPjiOICIyHl5qJX4NDUKMWGj8HlJ1WsTHT6Mj0BClH+P/30+f/489u7dK/3s7u6ODRs2YOzYsf2WOxEREb1w+fJl7Nq1S1r5HQDi4uKwePFiFv4QERG9xdOnT7Ft2zY8e/ZMaps/fz4SExP5PUpERERDDp/EOpjFasPhioY3rmwCADmldxET5ouUqYHc0pWIiIjsam9vx1dffYW8PAOKd+1CW+tzu3Fabx+ETJ2LJv8Z+Mf/9T2seTcMaqVikLMlGt44DiAicn4eaiVSpgYiIcofRpMFxrYOaN1V0GqUUCvkPf53+dSpUzh8+LD0s6enJzZu3IjAwMD+Tp2IiGhYE0URx44dw/Hjx6U2hUKBVatWYfr06Q7MjIiIyDU8evQI27ZtQ0tLi9S2ePFixMXFsYCWiIiIhiQW0TqY2WrD58equxX7eUlVr7YJJCIioqGro6MDR44cgcFgwI4dO9DU1GQ3TuHmAf+JM+E7ZT5axsSgWeUOOYBt5+qwctZ4cJFLosHFcQARkWtQ/q5Y1kOtRKC3e6/eQxRFHD16FCdOnJDatFotNm3aBD8/v/5KlYiIiPDiPsnOnTtx7do1qc3DwwM6nQ4hISEOzIyIiMg11NXVITs7GyaTSWpbunQpYmNjHZgVERER0cBiuYSDGU0WlNcZ3x6IF1u6Gk0WbuVKREQ0zFmtVhw/fhyCIKCwsBCPHz+2GydTusEtZCo0EXPhOSUeCncvtHwn5lqtEU1tHfBw4/UF0WDiOICIaHgQRREHDhzA2bNnpTZfX19s2rQJPj4+jkuMiIhoCGppaYEgCLh//77U5ufnh/Xr12PkyJEOzIyIiMg11NTUIDc3F+3t7VLbypUrMWvWLAdmRURERDTw+BTWwZpM5h7FG9s6er3yCREREbkum82Gb775BoIgoKCgAPX19Xbj3NzcMHPuPFSqIuAZvQRKD++3vvez1g4EeWv6O2UiegOOA4iIhj6bzYbdu3ejrKxMavP398emTZvg5eXluMSIiIiGoIcPHyI3N7fTDj3h4eHIzMyEuzvHUkRERG9TVVUFQRDQ0dEBAJDL5VizZg2mTp3q4MyIiIiIBh6LaB3MW6PuUbzWXTVAmRAREZGzEUURFy5cgMFgQH5+Pu7du2c3TqVSYf78+Vi2bBm2bNkCaHww7/9/pNvH8fHg9QXRYOM4gIhoaLNarSgqKkJ5ebnUFhwcjI0bN0Kj4eQlIiKi/nTz5k0UFhbCbP79ZMXZs2cjJSUFCoXCgZkRERG5hsrKShQWFsJqtQIAFAoFMjMzMWnSJAdnRkRERDQ4WETrYFqNEtHBWlyrfftWrtHBWmg1PGVERERDmSiKuHLlCgwGAwRBQHV1td04hUKBmJgYJCcnY+vWrQgNDZVee95u6XR9oZDLMDHAC15uSrS0W3CjoQVWmwjgd9cXQ6w4T6PR8CEZOT2OA4iIhq6Ojg7k5+fj1q1bUltoaCjWrVsHNzc3B2ZGREQ09Jw5cwZfffUVRFGU2pYuXYqYmBjIZDIHZkZEROQarly5gh07dkjfpSqVCnq9HuHh4Q7OjIiIiGjw8Emsg6kVcnwQH46P8sreGvthfATUCvnAJ0VERESDrrKyEoIgwGAwoLKy0m6MXC7H7NmzkZSUhPfffx+RkZF241QKGb4XF47/d9c1bIwNxfqYELSZrXjSaoavhxpuKjnyzt5DTuldfD8uHCrF0HioZLHaYLaK8A4KRVOrGY9azNBqVFAr5FAOoWuoF/20wWiyoMlkhrdGDa1GOeT6OdRxHEBENDS1t7cjNzcXNTU1UtuECROQmZkJlWpoTVwiInI0s8WKDqsIo6kDT1s7MNJDBa1GBZVCBrWSEyuHOpvNhgMHDuDcuXNSm0qlQkZGBiZOnOjAzIiIiFzHhQsXsGfPHulnNzc3bNiwAePGjXNgVkRERESDj0W0DqZUyJEYFYCNsSHIKa3pMm5jbCgSovxZGEFERDSEVFdXQxAECIKAS5cudRk3Y8YMJCUlYcuWLYiOjn7r+6qVCiRHB2BexCgcv/EI3992vtNql9HBWmydPx6HPlkIL3flkHi42Gq24HBFA74oqX6trx/EhyMxKgAeate/9B0u/RwOOA4gIhp6Wltb8eWXX6K2tlZqmzJlCtLT07lKPhFRP3vebsGh8gb8+sTrY6PvxYUjaUoAPN04Nhqq2trasH379k6rvmu1Wqxbtw6BgYEOzIyIiMh1nD59GocOHZJ+9vDwwKZNm/hdSkRERMNSn+8iNTQ0wGg0YsKECVLbb3/7W+zatQtWqxWLFi3CBx98AA8Pj74easjyUCvxaWoUYsJG4fOSqtdu+n0YH4GEKH8WRBAREQ0B9+7dQ35+PgRB6LRayndNmTIFycnJ2Lx5M2bOnNmrY/2fIzftFuddqzXifxVexsbYUHyaOrlX7+1MWs0W/GRfRZd9/SivTOqrK19PDZd+DicyAB8tmYAZ43zwn6fuvDYOeP+98Vg4YTSGxlrRRERDW3NzM7Kzs/Ho0SOpbcaMGVi5ciXkck6EICLqT63tFvx4bwVyz9ofG/1AKMOGmBB8mhrFQtoh6NmzZ8jNze30nRscHAy9Xo8RI0Y4MDMiIiLXIIoiSkpKUFJSIrV5enpiy5YtGD16tAMzIyIiInKcPt1B+td//Vf86le/wsqVK/HTn/4UAPD555/jX/7lXyCKIgDgxo0bOHPmDL788kuuuvEGHmolUqYGIiHKH0+ft8PY2oGRXm5DcgtiIiKi4aa+vh6FhYUwGAw4depUl3ETJ05EcnIyNmzYgJiYGMhkvSuds1htOFzR8MbVLQEgp/QuYsJ8kTI10GWvNYZLX4dLP4cTi9WGQxUN+FHxNWyICcGvNs9Bm9mKp61mjPRQw00lR+6ZGvzdngr8/1ZP5TklInJiz549w7Zt2/D06VOpLSYmBkuXLu319RwREdlntlhxsLzBbgHtq748U4O5432RMi1wSOy+Qi/cu3cPBoMBra2tUtuUKVOwevVqqFQqB2ZGRETkGkRRxMGDB1FaWiq1jRgxAhkZGSygJSIiomGt10W0x44dwy9/+UsAL7bOAQCz2Yzf/OY3AIDFixdj7ty52LZtGy5duoT8/HysW7euH1IeupQKOWQQ0VR3FwqFAqMDI1l4TERE5KIaGxtRVFQEg8GAkpIS2Gw2u3Hjx49HcnIy1q9fj7i4uH5ZqcxsteHzY9Xdiv28pMqlt4ofLn0dLv0cTl6e0yZTB355rAqfl1RhUuAIeLkp0dJuwfX6ZthezEvkOSUicmKNjY3Ytm0bmpubpbaFCxdi0aJFLKB1UiaTCXv37sWOHTtgsVjwD//wDwgNDXV0WkTUTR1WEb863r2x0a9OVCNpSgC4UcfQcOXKFezcuRNWq1Vqi4uLw+LFi/mdS0RE1A02mw179+7FxYsXpTYfHx9kZmYiODjYgZkREREROV6vbx8VFhZCJpPhk08+wfe//30AwDfffIOWlhb4+fnhF7/4BRQKBRYsWIBVq1Zh3759LKLtJpPJ5OgUiIiIqBeePXuG4uJiCIKAQ4cOdXqw86qxY8ciKSkJOp0OiYmJ/T5pxmiyoLzO+PZAvNjq0miywMNFnyoOl74Ol34OJ989pzYRqKhrthvLc0pE5Jzq6uqQk5PTaTW8pKQkzJ8/34FZkT3t7e04ePAgDAYDdu3ahZaWFum1UaNGSQsFEJHzM5o6ejQ2amrrgIcbr6Ndmb0tp+VyOVatWoV33nnHgZkRERG5DqvVip07d+LKlStS26hRo5CVlQV/f38HZkZERETkHHp99+jSpUvw9fXF9773PantxIkTAID4+HipGGTChAkICQnBjRs3+pgqERERkfNpaWnBrl27IAgCDhw4ALPZbDcuICAAycnJyMjIQGpqKpTKgXuI12Syn0NXjG0dCPR2H6BsBtZw6etw6edwwnNKROTaampqkJubi/b2dqltxYoVmD17tgOzold1dHTgyJEjMBgM2LFjB5qamuzGTZ8+fZAzI6K+eNra0aP4Z60dCPLWDFA2NNAsFgt27drVqeBHo9FAp9NxFXEiIqJuslgsKCwsxPXr16W2gIAAZGVlwdfX14GZERERETmPXldvPHv2DJMnT+60Tc7p06chk8kQExPTKdbLywsPHjzofZZERERETsRkMmHfvn0wGAzYu3dvl6vIjxo1CklJSUhPT8eqVavg5uY2KPl5a9Q9ite6qwYok4E3XPo6XPo5nPCcEhG5rqqqKgiCgI6OF4Vccrkcq1evxrRp0xycGVmtVhw/fhyCIKCwsBCPHz+2GzdixAikpaVh8+bNSEpKGuQsiagvRnr07LrYp4fx5DyeP38Og8GA+/fvS22jRo3C+vXrWfBDRETUTWazGYIgoLq6WmoLDg6GTqeDVqt1YGZEREREzqXXRbQ+Pj4wGn+/bVJ9fT2qq6vtFtHW1dVhxIgRvc+SiIiIyMFebgErCAJ27tzZaQvYV/n4+GDJkiVYs2YN1q5dC41m8Fe80WqUiA7W4lrt27e4jA7WQqtx3a0tv9tXhVyGiQFe8HJToqXdghsNLbDaRACu3dfhdE6Hi+Hy2SUiGmoqKytRWFgIq9UKAFAoFMjMzMSkSZMcnNnwZbPZUFpaCoPBgIKCAtTX19uN02g0WLlyJfR6PZYtW+aQ63Qi6jutRtWzsREno7mkhw8fIi8vD8+ePZPawsLCkJmZyX+/iYiIuqmtrQ25ubm4d++e1BYaGorMzEx4eno6MDMiIiIi59PrJ7Hjx4/H+fPncevWLURGRmLXrl0AgIkTJyIgIECK27lzJ548eYLY2Ni+Z0tEREQ0iF5uASsIAoqKirrcAtbLywuLFy/GqlWroNfr4eXlNciZdqZWyPFBfDg+yit7a+yH8RFQK+QDn9QAednXHxVfw8bYUKyPCUGb2YonrWb4eqjhppIj7+w95JTedem+DqdzOlwMl88uEdFQcvnyZRQXF0MUX0xyUKlUWLduHcLCwhyc2fAjiiIuXLgAg8GA/Pz8Tg+FX6VWq5GamgqdTocVK1Y4/DqdiPpOpZDhe3Hh+IFQ9tbY78eFQ6WQvTWOnMutW7dQWFiI9vZ2qW3WrFlITU2FQqFwYGZERESu4/nz58jJyek0yTAiIsJhC38QERERObteF9GmpKTg3Llz2LJlC2bOnIljx45BJpNhzZo1AF6sTPub3/wGBoMBMpkMq1ev7q+ciYiIiAbMq1vAbt++HY2NjXbjPDw8EB8fj+XLl2PDhg3w8fEZ3ETfQKmQIzEqABtjQ5BTWtNl3MbYUCRE+UPpwsV5SoUcSVEBiA0bhZIbj/D9bec7rUgUHazF1vnjceiThRjhrnTZvg6nczpcDJfPLhHRUHH+/Hns3btX+tnd3R0bNmzA2LFjHZjV8CKKIq5cuQJBEGAwGDptR/oqpVKJ5ORk6HQ6pKWlwdvbe5AzJaKBpFYqkDQlAOvnhiD3bNdjow0xIUicEgC1kkWXruTcuXPYv3+/NGEFAJKTkxEbGwuZjAXRRERE3dHc3Ixt27Z1erYxefJkrFmzBmq12oGZ0UBqbm7Grl27IAgCLly4gHXr1uGf/umfHJ0WERGRy+h1Ea1er0dpaSkOHjyIw4cPAwDmzp2LjRs3AgAaGhqQk5MDAMjKymIRLRERETktm82G06dPo6Cg4I1bwLq5uSEuLg4pKSnYvHkz/Pz8BjnT7vNQK/FpahRiwkbh85Kq14rzPoyPQEKUPzzUrr9FvAjgX4/ctFtceq3WiP9VeBkbY0PxaerkwU+uHw2nczpcDJfPLhGRqzt16pR07wsAPD09sXHjRgQGBjowq+GjsrISgiBAEARUVFTYjZHL5Vi8eDH0ej3WrFmDUaNGDXKWRDSYPN2U+OvlUYgJ88WvTlS/Njb6flw4EqcEwNONYyNXYbPZ8NVXX+Hs2bNSm0qlwtq1azFp0iQHZkZERORanj59iuzsbDx9+lRqmzZtGlatWgWlktdGQ01rayv27dsHg8GAvXv3oq2tTXrts88+w49+9CNOLCUiIuqmXl8pyeVy/Ou//itOnDiByspKjB8/HkuWLJG20wkLC0NiYiLS0tKQlJTUbwkTERER9ZcnT57gX/7lX3Dw4EE0NDTYjVGpVJg3bx6WLVuGrVu3IigoaJCz7D0PtRIpUwOREOUPo8kCY1sHtO4qaDVKqBXyIbGypcVqw+GKhjeuzgoAOaV3ERPmi5SpgS7d7+FwToeL4fbZJSJyRaIo4ujRozhx4oTUptVqsWnTJqeeTDUUVFdXS4Wzly5d6jIuLi4OOp0OGRkZCAgIGMQMicjRPN2USJkWiKQpAWhq68Cz1g74eKigdVdBpZBxBVoX0t7ejsLCQty6dUtqGzFiBNavX88JK0RERD3Q2NiIbdu2obm5WWqbNWsWUlNTpRoOcn3t7e346quvYDAYsGvXLjx//txu3NKlS1lAS0RE1AN9nm4UFxeHuLi419q1Wi1+8Ytf9PXtiYiIiAaMXq/HkSNHXmtXKBSIiYlBUlIS3n//fYSGhjogu/6h/F1hpYdaiUBvd0en0+/MVhs+P2Z/K9/v+rykCglR/i5fiDjUz+lwMRw/u0RErkQURRw4cKDTinharRabN2/mKqcD5N69e8jPz4cgCDh37lyXcTExMdDpdMjMzMTYsWMHMUMicjZqpQJqJeDhpkSQt8bR6VAvPHv2DHl5eXj48KHUFhQUhHXr1mHEiBEOzIyIiMi11NfXIzs7G62trVJbTEwMkpOTIZfznqKr6+jowNdffw1BELBjxw40NTXZjRs5ciTS09Oh1+uxePHiQc6SiIjItfXbmv1PnjxBdXU1mpubsXjxYthsNphMJnh6evbXIYiIiIj6ldH4+y0f5XI5Zs+ejaSkJGzduhUTJkxwYGbUXUaTBeV1xrcHArhWa4TRZIGHmttWkePxs0tE5LxsNht2796NsrIyqW3kyJHIyspiAW0/q6+vR2FhIQwGA06dOtVl3IwZM6DX65GVlYWwsLBBzJCIiAbK/fv3YTAYOq2eFhUVhdWrV0OtVjswMyIiItdy79495Obmoq2tTWpbsGABlixZAplM5sDMqC+sVitKSkogCAK2b9+Ox48f240bMWIEVq9eDZ1Oh6SkJF5HERER9VKfn8J+8803+Od//mdcvnwZACCTyVBeXo4HDx5gzZo12LBhA37wgx/wAo2IiIiczpdffom//Mu/xIgRI/Bnf/ZnmDZtmqNToh5qMpl7FG9s6+DqreQU+NklInJOVqsVRUVFKC8vl9pGjx6NrKws+Pn5OTCzoaOxsRFFRUUwGAwoKSmBzWazGzdlyhTo9XrodDpMnDhxkLMkIqKBdPXqVRQXF8NqtUpt7733HhISEvgsiYiIqAdu376NvLw8dHR0AHhRq7Fo0SLExcXxO9UF2Ww2nD59GoIgoLCwEPX19XbjPDw8sHLlSuh0OqSkpMDdnfeNiYiI+qpPRbRffvklfvzjH9u92V1fX4+Wlhb86le/Qk1NDX7+85/35VBERERE/S4iIgJ//dd/DeDFQ3pyPd6ans2q1rqrBigTop7hZ5eIyPl0dHQgPz8ft27dktqCgoKQlZUFHx8fxyU2BDx79gzFxcUQBAGHDh3qVDT1qsjISOh0Ouj1ekydOnWQsyQiooEmiiKOHz+OY8eOSW1yuRwrVqzAzJkzHZcYERGRC7px4wby8/Ol8ZVcLkdCQgLmz5/v4MyoJ0RRxPnz52EwGJCfn4/79+/bjXNzc0NKSgr0ej1WrFjBHaGJiIj6Wa+LaMvLy/GTn/wEcrkcf/AHf4C0tDT86Ec/wqVLlwAA06ZNw8cff4x/+7d/w4EDB7B48WKsWrWq3xInIiIiItJqlIgO1uJarfGtsdHBWmg1fd6Igahf8LNLRORc2tvbkZubi5qaGqlt3LhxyMrKgpeXlwMzc10tLS3YtWsXBEHAgQMHYDbbX4U9JCREKpydOXMmV0siIhqiLBYLdu/eLe1qCAAajQZZWVkYP3684xIjIiJyQVevXsWOHTukxc6USiWSkpIwd+5cB2dG3SGKIi5fvgxBECAIAqqrq+3GKZVKJCcnQ6/XIy0tDVqtdpAzJSIiGj56/ST2P/7jP2Cz2fDDH/4QGzZsAPBidtNL7u7u+OM//mP4+fnhRz/6EYqKilhES0RERET9Sq2Q44P4cHyUV/bW2A/jI6BWyN8aR85Ho9FAoVA4Oo1+xc8uEQ0FQ+Xf59bWVnz55Zeora2V2sLCwpCZmQmNRuPAzFyPyWTCvn37YDAYsHfvXphMJrtxL1f41el0iI2NZeEsEdEQ9/z5cwiCgHv37kltvr6+WL9+PUaNGuXAzIiIiFzPxYsXsXv3bulnlUqF1NRUzJgxw3FJUbdUVFRAEAQYDAZcv37dboxcLseSJUug0+mQnp4OX1/fQc6SiIhoeOp1Ee25c+fg7e2N9evXvzEuIyMDP//5z1FRUdHbQxERERFRL1msNpitNhhNFjSZzPDWqKHVKKFWyKEcAkV5SoUciVEB2BgbgpzSmi7jNsaGIiHKf0j0eTh58fkV4R0UiqZWMx61mKHVqIbE55efXSJyZUPp3+fm5mZkZ2fj0aNHUtvEiRORnp4ONzc3B2bmOtrb23Hw4EEIgoCdO3eipaXFbpyfnx8yMzOh0+mwYMGCIVGATUREb/fo0SPk5ubi2bNnUtv48eORlZXFySpEREQ9VFpaiq+++kr62c3NDStXrkR0dLQDs6I3qaqqklacfXVF/lfJZDLExcVBp9Nh7dq1CAgIGOQsiYiIqNdFtE+ePEFUVNRbV4qQyWQYM2YMi2iJiIiIBlmr2YLDFQ34oqS605bx0cFafBAfjsSoAHioXX+LeA+1Ep+mRiEmbBQ+L6l6ra8fxkcgIcp/SPR1OBkOn19+donIFQ2lf5+fPn2K7OxsPH36VGqbOnUq0tLSoFS6Rh8cpaOjA0eOHIEgCCgqKkJTU5PdOB8fH6Snp0Ov12Px4sX870pENMxUVVWhoKAA7e3tUtvMmTOxfPlyTqYgIiLqAVEUceLECRw9elRq8/DwwOrVqzFhwgQHZkb21NTUID8/H4Ig4Pz5813GxcTEQK/XIzMzE2PGjBnEDImIiOi7en3nWqvVoq6urluxDQ0N0Gq1vT0UEREREfVQq9mCn+yrsLvC5bVaIz7KK8PG2FB8mjrZZQpd3sRDrUTK1EAkRPnj6fN2GFs7MNLLzWVXxRvuhtPn99XPrtFkgbGtA1p31ZBaMZqIho6h9O9zY2Mjtm3bhubmZqlt1qxZSElJYaFnF6xWK44fPw5BELB9+3Y0NjbajRsxYgTS0tKg0+mQnJwMtVo9yJkSEZEzOH/+PPbt2wdRFKW2xMREzJ8//62LsxAREdHviaKIw4cP4/Tp01Kbl5cX1q5di/HjxzsuMeqkrq4OhYWFMBgMnc7Vd82cORM6nQ5ZWVkICwsbxAyJiIjoTXr9VGDq1Kk4ceIETp8+jfnz53cZd/ToUTx8+BALFy7s7aGIiIiIqAcsVhsOVzS8cYt4AMgpvYuYMF+kTA0cEoV6SoUcMohoqrsLhUKB0YGRXNnGBQ3Hz6/yd8WyHmolAr3dHZ0OEZFdQ+nf57q6OuTk5KC1tVVqi4mJQXJyMuRy58zZUWw2G0pLS2EwGFBQUID6+nq7cRqNBitXroROp0NKSgq35yYiGsZsNhsOHjyIM2fOSG0qlQrp6emYPHmyAzMjIiJyPaIoYt++fZ1WM/X29ubKpU6isbER27dvh8FgQElJSafJQ6+aMmUK9Ho9dDodJk6cOMhZEhERUXf0uog2KysLx48fxw9/+EP88pe/tHvz45tvvsFf/dVfQSaTIT09vU+JEhEREVH3mK02fH6suluxn5dUISHK32mLXHrDZDI5OgXqg+H++SUiclZD5d/nmpoa5ObmdtpWesGCBViyZAlXxfsdURRRUVGB3NxcFBQU4N69e3bj1Go1UlJSoNfrsWLFCnh5eQ1ypkRE5Gza29tRVFSEGzduSG0jRozAunXrEBQU5MDMiIiIXI/NZsPOnTtx+fJlqc3X1xc6nQ7+/v4OzGx4e/bsGXbs2AFBEHD48GFYrVa7cZGRkVLh7NSpUwc5SyIiIuqpXhfRJiYmYsWKFdizZw/WrFmDyMhIaTWKjz/+GLdu3UJ1dTVEUcTixYuxbNmyfkuaiIiIiLpmNFlQXmfsVuy1WiOMJovTb7lMwwc/v0REzmko/PtcVVUFQRDQ0dEBAJDJZFi0aBHi4uKGfQGtKIq4cuUK8vLykJOTg/v379uNUyqVSEpKgl6vR1paGry9vQc5UyIiclZNTU3Iy8tDQ0OD1BYYGIh169ZBq9U6MDMiIiLXY7FYUFRUhIqKCqnN398fOp0Ovr6+DsxseGpubsauXbsgCAK++uormM1mu3EhISFS4ezMmTOH/b0GIiIiV9Knpxl///d/j6CgIPzXf/0Xbt68KbV/9dVXAACFQoHMzEx8+umnfcuSiIiIiLqtyWT/Bk5XjG0d3EKenAY/v0REzsnV/32urKxEYWGhtEKMQqFAQkIC5s2b5+DMHKuyshKCIEAQhE4PZ18ll8uxePFi6HQ6pKenY9SoUYOcJRERObsHDx4gLy8Pz58/l9omT56MNWvWQK1WOzAzIiIi19PR0QFBEFBVVSW1BQUFISsrCz4+Po5LbJhpbW3Fvn37YDAYsHfvXrS1tdmNe3lu9Ho9YmJiWDhLRETkovpURKtQKPCnf/qneP/991FSUoIbN26gpaUFGo0GYWFhiI+PR3BwcH/lSkRERETd4K3p2QMqrbtqgDIh6jl+fomInJMr//t8+fJlFBcXQxRFAC9WU126dCnmzJnj4Mwco7q6WiqcvXTpUpdxCxYsgF6vR0ZGBgICAgYxQyIiciXl5eXYsWMHLBaL1DZ//nwkJiayiISIiKiH2tvbkZubi5qaGqlt3LhxyMrKgpeXlwMzGx7a29vx1VdfQRAE7Ny5s9MEoVf5+fkhMzMTOp0OCxYsgEKhGORMiYiIqL/1y756vr6+WLNmTX+8FRERERH1kVajRHSwFtdq377lcnSwFlqNc221TMMbP79ERM7pu/8+K+QyTAzwgpebEi3tFtxoaIHV9qJI1Zn+fT5//jz27t0r/axWq7F8+XJMnz7dgVkNvvv37yM/Px8GgwHnzp3rMu7dd9/FggULkJiYiKVLl/JBIBERdUkURZw8eRJHjhyR2uRyOZYvX45Zs2Y5MDMiIiLX1Nraii+//BK1tbVSW3h4ODIyMqDRaByY2dDW0dGBr7/+GoIgYMeOHWhqarIb5+Pjg7Vr10Kn02Hx4sVQKp3jvgcRERH1j375ZrdYLDhz5gzu3LkDo9GIUaNGITIykjdKyC6L1Qaz1QajyYImkxneGjW0GiXUCjmUCrmj0yMiInJ5aoUcH8SH46O8srfGfhgfATW/f8mJ8PNLROScXv77/KPia9gYG4r1MSFoM1vxpNUMXw813FRy5J29h5zSu07z7/OpU6dw+PBh6WeNRoO0tDRMmjTJgVkNnvr6ehQWFkIQBJw8ebLLuBkzZkCv1yMrKwshISEoKysbvCSJiMglWSwW7Nmzp9OK5u7u7sjKykJYWJgDMyMiooHAZ7sDr7m5GdnZ2Xj06JHUNnHiRKSnp8PNzc2BmQ1NVqsVJSUlEAQB27dvx+PHj+3GjRgxAmlpadDr9UhKSoJa3bNdeoiIiMh19KmI1mKx4P/+3/+LX//612hpaXntdX9/f3zyySdYvXp1Xw5DQ0ir2YLDFQ34oqS60+pi0cFafBAfjsSoAHioOWuLiIioL5QKORKjArAxNgQ5pTVdxm2MDUVClD9vdJJT4eeXiMg5KRVyJEUFIDZsFEpuPML3t51/bVy/df54HPpkIUa4Kx3677Moijh69ChOnDghtXl6eiI9PR3h4eEOy2swPH78GNu3b4cgCDh27BhsNpvduKioKOj1euh0uk5FxVardbBSJSIiF9Xa2gpBEDptM+3r64v169dj1KhRDsyMiIgGAp/tDrxnz54hOzsbT548kdqio6ORlpYGlUrlwMyGFpvNhsuXL+M///M/sX37dtTX19uN02g0WLlyJfR6PZYtW8ZVgImIiIaJXl/RiqKIP/mTP8GhQ4cgiiLc3NwQFhYGDw8PNDc3486dO2hoaMBf/dVf4caNG/jzP//z/sybXFCr2YKf7KuwWwxxrdaIj/LKsDE2FJ+mTuZgi4iIqI881Ep8mhqFmLBR+Lyk6rUbnB/GRyAhyp/fueSU+PklInJOIoB/PXKzy3H9/yq8LI3rHUUURRw4cABnz56V2rRaLTIyMjBu3DiH5TWQmpqaUFxcDIPBgMOHD8NisdiNi4iIkApnp06dCplMNsiZEhGRq2tsbERubi6ePn0qtYWGhiIrKwseHh4OzIyIiAYCn+0OvMePH2Pbtm0wGn9//3PmzJlITU2FUsn/pn0liiLOnz+PvLw85ObmoqGhwW6cWq1GamoqdDodVqxYAS8vr0HOlIiIiByt11deO3bswMGDB6HRaPBXf/VXWL16dafl69va2lBYWIh/+qd/wn/+539iwYIFmD9/fr8kTa7HYrXhcEXDG1cTA4Cc0ruICfNFytRAripGRETURx5qJVKmBiIhyh9GkwXGtg5o3VXcaotcwquf36fP22Fs7cBILzdoNSp+fomIHMAVxvU2mw27d+9GWVmZ1DZy5EhkZWUhMDBwUHMZaC0tLdi9ezcMBgMOHDgAs9lsNy4kJAQ6nQ46nQ6zZs1i4SwREfVadXU1CgoK0NbWJrXNmDEDK1asgEKhcGBmREQ0EFxhDOjqGhoakJ2djefPn0ttc+fOxdKlSyGX879lb4miiMuXL0MQBAiCgOrqartxSqUSSUlJ0Ov1SEtLg7e39yBnSkRERM6k10W0+fn5kMlk+PnPf45Fixa99rq7uzs2btyIUaNG4ZNPPsG2bdtYRDuMma02fH7M/gXqd31eUsWteYmIiPqJ8nfFhh5qJQK93R2dDlGPKBVyyCCiqe4uFAoFRgdG8uEsEZGDOPu43mq1oqioCOXl5VLb6NGjkZWVBT8/v0HLYyCZTCbs27cPgiBgz549MJlMduOCgoKQmZkJvV6PmJgYPnwlIqI+u3DhAvbu3QtRFKW2hIQEvPfee5ygQUQ0RDn7GNDVPXjwADk5OZ0mp7z33ntISEjgd2svVVRUSIWzlZWVdmPkcjkWLVoEvV6P9PR0jBo1apCzJCIiImfV6yLaqqoqjB071m4B7atSUlLwj//4j7h8+XJvD0VDgNFkQXmd8e2BeLH9h9Fk4bYfRERERAQAXRYJERHR4HHmcX1HRwfy8/Nx69YtqS0oKAhZWVnw8fEZlBwGSnt7Ow4ePAhBELBz5060tLTYjfPz80NGRgb0ej0WLFjASSdERNQvbDYbDh06hNLSUqlNqVRizZo1mDJligMzIyKigebMY0BXd+fOHeTl5Uk7ishkMsTHx2PhwoUsoO2hqqoqqXD2TfUoL3dNTkhIQEJCAsfMRERE9Jo+XcmOGDGiW3G+vr6oqqrqy6HIxTWZ7G8r2BVjWwdXyyMiIiIiIiJyEs46rm9ra0NeXh5qan6/xei4ceOQlZUFLy+vAT/+QLBYLDhy5AgMBgN27NiBZ8+e2Y3z8fFBeno6dDodlixZAqWSD6yJiKj/mM1mFBUV4fr161Kbl5cX1q1bh+DgYAdmRkREg8FZx4Cu7ubNm8jPz4fFYgHwYmXUJUuWYP78+Syg7aZ79+4hPz8fBoMB58+f7zJu7ty50Ov1yMzMRFBQEMrKygYvSSIiInI5vb67Pm3aNJw9exYPHjzAmDFjuox79uwZbt68ienTp/f2UDQEeGvUPYrXuqsGKBMiIiIiIiIi6ilnHNe3trYiJycHdXV1UltYWBgyMzOh0WgG/Pj9yWq14sSJExAEAYWFhWhsbLQb5+XlhdWrV0On0yE5ORlqdc/OCxERUXc0NTUhLy8PDQ0NUltgYCDWrVsHrVbrwMyIiGiwOOMY0NVdu3YNRUVFsNlsAACFQoGkpCTExMQ4ODPnV19fj4KCAgiCgFOnTnUZN2PGDOj1emRlZSEsLExqt1qtg5EmERERubBeF9F+9NFH2LhxI/7n//yf+NWvfgU/P7/XYtrb2/GXf/mX6OjowH/7b/+tT4mSa9NqlIgO1uJa7du3/YgO1kKr4eopRERERERERM7C2cb1zc3NyM7OxqNHj6S2iRMnIj09HW5ubgN67P5is9lQWloKQRBQUFDQqRj4VRqNBitWrIBer0dKSorLFQgTEZFrqa2tRV5eHlpaWqS2iRMnYu3atZy8QUQ0jDjbGNDVlZWVYdeuXRBFEQCgUqmwbNkyzJo1y8GZOa/GxkZs374dgiDg2LFj0n+774qKioJer4dOp8OkSZMGOUsiIiIaKnp9Nfv48WNkZmYiLy8Py5YtQ2pqKqZNmwYfHx+0trbi5s2b2Lt3L+rr6xEZGYmzZ8/i7Nmzr73Pxx9/3KcOkGtQK+T4ID4cH+WVvTX2w/gIqBXygU+KiIiIiMgJWKw2mK02GE0WNJnM8NaoodUooVbIoeR1MZFLGcp/z840rn/69Cmys7Px9OlTqW3q1KlIS0uDUuncD25FUcTFixdhMBiQn5+Pmpoau3FqtRopKSnQ6XRYuXIlvLy8BjlTIiIajioqKlBUVCRtMQ0A8+bNQ2JiIuRy176WcTYWiwXnzp1DY2MjJk+eDE9PT0enRETUiTONAV3d2bNnsX//fulnNzc3rFixAlOnTnVgVs7p2bNnKC4uhsFgwOHDh7tcQTYyMhI6nQ46nQ5Tp06FTCYb5EyJiIhoqOn1k4X//t//u3Qx0tLSgoKCAhQUFHSKeTkb6NatW7h169Zrr8lkMhbRDhNKhRyJUQHYGBuCnFL7D4gAYGNsKBKi/F3+4SIRERERUXe0mi04XNGAL0qqO63sER2sxQfx4UiMCoCH2rkLwojohaH+9+ws4/rGxkZs27YNzc3NUtusWbOQkpLitAW0oiji6tWrMBgMEAQBVVVVduOUSiWSkpKg0+mwevVqeHt7D3KmREQ0XImiiFOnTuHrr7+W2uRyOVJTUzF79mwHZja02Gw2nDx5UlqF/uWK+hUVFfjyyy8dnB0RUWfOMgZ0dSdOnMCRI0eknzUaDVavXo2JEyc6MCvn0tLSgl27dkEQBBw4cABms9luXEhIiFQ4O2vWLBbOEhERUb/q9dOFd999tz/zoGHAQ63Ep6lRiAkbhc9Lql57qPhhfAQSovxd+qEiEREREVF3tZot+Mm+CrsPIq7VGvFRXhk2xobi09TJvEYmcnLD5e/Z0eP6uro65OTkoLW1VWqLiYlBcnKyU66Od/36dQiCAIPBgIqKCrsxcrkcixYtgl6vR3p6OkaNGjXIWRIR0XBntVqxZ88elJWVSW1ubm7IyspCeHi44xIbIkRRxJkzZyAIAvLz81FbW/taTENDgwMyIyJ6O0ePAV2ZKIr4+uuvcerUKanNy8sL6enpCAsLc2BmzsFkMmHv3r0QBAF79uxBW1ub3bigoCBkZWVBp9MhNjaWhbNEREQ0YHp9RZudnd2fedAw4aFWImVqIBKi/GE0WWBs64DWXTVktrckIiIiIuoOi9WGwxUNb1zJAwBySu8iJswXKVMDea1M5KSG29/zq+P6p8/bYWztwEgvN2g1qgEd19fU1CA3Nxft7e1S24IFC7BkyRKneoh2+/ZtCIIAQRA6FSN914IFC6DX67F27VoEBgYOXoJERESvaG1tRX5+Pu7evSu1jRw5EuvXr4efn58DM3Ntoiji22+/lQpn79y5YzdOqVTivffew7//+78PboJERD3AZ7s9J4oi9u/fj3PnzkltWq0WmZmZGDt2rAMzc6z29nZ89dVXEAQBu3btQktLi904Pz8/ZGRkQK/XY8GCBVAoFIOcKREREQ1HnBZGg075uwGVh1qJQG93R6dDRERERDTozFYbPj9W3a3Yz0uquC0ekRMbjn/PSoUcMohoqrsLhUKB0YGRA/pQq6qqCoIgoKOjAwAgk8mwaNEixMXFOUUB7f3795Gfnw9BEHD27Nku4+bOnQudTofMzEyMGzduEDMkIiJ6XWNjI/Ly8vDkyROp7eU2yR4eHg7MzHVdu3YNBoMBgiDg5s2bdmMUCgUSExORmZmJ8PBwaLVarvhLRE6Pz3a7z2azYffu3Z0mVfr6+iIzM3NYTqDs6OjAkSNHYDAYsGPHDjQ1NdmN8/HxQXp6OvR6PRYvXgylkmUsRERENLj65erj4sWLOHz4MG7fvo3nz5/D09MT48ePx8KFCzFv3rz+OAQREREREdGQYTRZUF5nfHsgXmwFbzRZuDUekZMazn/PJpNpwI9RWVmJwsJCWK1WAC8KTxISEhx+v6mhoQGFhYUwGAw4efJkl3EzZsyATqfjlthERORUbt++jfz8/E5bJ7/zzjtYsWIFi1Z66ObNmxAEAQaDAdeuXbMb83ICkE6nQ3p6OkaPHg2r1frGVeuJiMj1WK1WFBUVoby8XGobPXo0srKyhtUK71arFcePH4cgCCgsLMTjx4/txnl5eWH16tXQ6XRITk6GWq0e5EyJiIiIfq9Pd0NaWlrwF3/xFzhy5AiAF1sTvCSTyfDb3/4WCxcuxD/8wz/A29u7b5kSERERERENEU0mc4/ijW0dXOmDyEnx73ngXL58GcXFxdL9JqVSiaVLl2LOnDkOyefx48coKiqCwWDAsWPHYLPZ7MZFRUVBr9dDp9Nh0qRJg5wlERHRm128eBF79+7t9D22ZMkSLFiwwClWeHcFd+7ckVahv3jxYpdx8+fPh16vR0ZGBoKCggYxQyIiGmwdHR3Iz8/HrVu3pLagoCBkZWXBx8fHcYkNEpvNhm+++QaCIKCgoAD19fV24zQaDVauXAmdToeUlBRoNJpBzpSIiIjIvl4X0dpsNvzxH/8xzp8/D1EUMXPmTERHR8PLywtGoxFXr17F5cuXcfz4cXz00Uf4r//6r/7Mm4iIiIiIyGV5a3q2soLWXTVAmRBRX/HveWCcP38ee/fulX5Wq9VYvnw5pk+fPqh5NDU1obi4GIIg4NChQ7BYLHbjIiIioNPpoNfrMXXqVBYhERGR07HZbPj6669x+vRpqU2pVGL16tWIjo52YGau4cGDBygoKIAgCCgtLe0ybs6cOdIq9CEhIYOYIREROUp7ezvy8vJw9+5dqW3cuHHIzMzEiBEjHJjZwBJFERcuXIDBYEB+fj7u3btnN06tViMlJQV6vR4rVqyAl5fXIGdKRERE9Ha9LqLdsWMHzp07Bz8/P/ziF7/AjBkzXou5ePEiPvroI5w9exa7du3CqlWr+pLrsKHRaKBQKBydBhERERGRUxiK18dajRLRwVpcq337FvDRwVpoNdxSlchZ8e+5/506dQqHDx+WftZoNEhLSxu0VV1bWlqwe/duCIKA/fv3w2y2v9rwuHHjpMLZWbNmsXCWiIicltlsRlFREa5fvy61eXl5Qa/XY8yYMQ7MzLk9fPgQhYWFEAQBJ06c6LQb46umT58uFc5GRkYOcpZERORIJpMJX375JR48eCC1hYWFITMzc0iusiqKIq5cuQJBEGAwGFBdXW03TqlUIikpCXq9Hmlpady1mIiIiJxer5/cFBcXQyaT4Wc/+5ndAloAmDVrFj777DNs2bIFxcXFLKJ9C4vVBrNVhHdQKJpazXjUYoZWo4JaIYdSIXd0ev3mRT9tMJosaDKZ4a1RQ6tRDrl+EhEREVHfDOXrY7VCjg/iw/FRXtlbYz+Mj4DaxftLNJTx77n/iKKII0eO4OTJk1Kbp6cn0tPTER4ePqDHNplM2L9/PwwGA/bs2QOTyWQ3zs/PD+vXr4dOp0NsbCzkcp5PIiJybkajEXl5eZ22VQ4ICMC6detY0GLHkydPsGPHDhgMBhw5cgQ2m81u3KRJk6DX66HT6RAVFTXIWRIRkTNoaWlBdnY2Hj58KLVNmDABa9euhZubmwMz63+VlZUQBAGCIKCiosJujFwux+LFi6HT6ZCeno5Ro0YNcpZEREREvdfrItobN25gzJgxmDt37hvjYmJiMGbMGNy4caO3hxoWWs0WHK5owBcl1Z1Wr4kO1uKD+HAkRgXAQ+36q9UMl34SERERUd8M9etGpUKOxKgAbIwNQU5pTZdxG2NDkRDl7/JFw0RDGf+e+4coiti/fz/OnTsntWm1WmRkZGDcuHEDckyz2YyDBw9CEAQUFxejpaXFbpyPjw+WLFmC1atXY926dVAqXff7h4iIhpe6ujrk5eWhublZahuqxT19YTQasXPnTgiCgIMHD6Kjo8NuXFhYmFQ4O336dK5CT0Q0jDU1NWHbtm148uSJ1DZlyhSsXr0aKpXKgZn1n+rqaqlw9tKlS13GLViwAHq9HhkZGQgICBjEDImIiIj6T6/v+j9//hwhISHdivX19e20TRB11mq24Cf7Kuw+bLtWa8RHeWXYGBuKT1Mnu3ShwHDpJxERERH1zXC5bvRQK/FpahRiwkbh85Kq14qFP4yPQEKUv0v3kWi44N9z39hsNuzatavTQ7mRI0ciKysLgYGB/Xosi8WCI0eOQBAEFBUV4dmzZ3bjRowYgUWLFiEtLQ06nQ5eXl79mgcREdFAq6ysRFFRUaeC0NjYWCQlJXEldbx4xrVnzx4IgoB9+/ahvb3dbtzYsWORlZUFvV6POXPmsHCWiIjw5MkTbNu2DU1NTVLbO++8gxUrVrj8pMt79+6hoKAABoOh0yTX75o7dy70ej0yMzMxduzYQcyQiIiIaGD0+ipu9OjRuHPnDjo6Ot44m8psNuP27dtcrr8LFqsNhysa3rhaDQDklN5FTJgvUqYGuuSqNcOln0RERETUN8PtutFDrUTK1EAkRPnDaLLA2NYBrbsKWo0SaoXcpftGNNzw77l3LBYLioqKOm0HOXr0aGRlZcHPz69fjmG1WnHy5EkYDAZs374djx49shvn4eGB+Ph4LF++HBs2bICPj0+/HJ+IiGgwiaKI06dP4/Dhw1KbTCZDamoq5syZ48DMHK+trQ0HDhyAwWDA7t270draajcuICAAmZmZ0Ol0mD9/PouOiYhI8vDhQ2RnZ3fayeTdd9/FsmXLXPb7or6+HoWFhTAYDDh16lSXcTNmzIBOp0NWVhbCw8MHMUMiIiKigdfrIto5c+Zgz549+OKLL/A//sf/6DLuiy++QEtLCxYvXtzbQw1pZqsNnx+r7lbs5yVVLrv143DpJxERERH1zXC8blT+rrjOQ61EoLe7o9Mhoj7g33PPdHR0QBAEVFVVSW1BQUHIysrqcwGrKIooLS2FwWBAQUEB6urq7Ma5ubkhLi4OKSkp2Lx5c78V7hIRETmC1WrFnj17UFZWJrW5ubkhMzMTERERjkvMgcxmMw4fPgyDwYCdO3fCaDTajfP19UVGRgZ0Oh3i4+OhUCgGOVMiInJ2tbW1yMnJgclkktrmzZuHpKQkl1upvLGxEUVFRRAEAceOHYPNZrMbFxUVBb1eD51Oh0mTJg1ylkRERESDp9dFtFu2bMHevXvxb//2b2hsbMTmzZs7zTiqrq7Gf/3XfyE/Px9yuRybN2/ul4SHGqPJgvI6+zdtvutarRFGk8Ult38cLv0kIiIior7hdSMR0fDQ1taGvLw81NT8fuXxcePGISsrC15eXr16T1EUcfHiRQiCAEEQOr33q1QqFebNm4dly5Zh69atCAoK6tXxiIiInInJZEJ+fj7u3Lkjtfn4+GD9+vUYPXq04xJzAIvFgmPHjkEQBGzfvh1Pnz61G6fVarFmzRro9XokJCS8cddFIiIa3u7evYvc3FyYzWYAL1Z5j4uLw6JFi1ymgPbZs2coLi6GIAg4fPgwLBaL3biIiAipcHbq1Kku0z8iIiKivuj10+apU6fik08+wWeffSY9nHB3d4eXlxdaWlrQ1tYG4MUDjE8++QTTpk3rt6SHkiaTuUfxxrYOl1zNZrj0k4iIiIj6hteNRERDX2trK3JycjqtDhsWFobMzExoNJoev9/Vq1dhMBggCAJu3bplN0ahUCAmJgbJycnYunUrQkNDe50/ERGRs3n8+DFyc3Px5MkTqW3cuHHQ6XTw9PR0YGaDx2az4eTJkxAEAYWFhXj48KHdOE9PT6xatQp6vR5Lly6Fm5vbIGdKRESu5tatWxAEQSo6lclkWLJkCd577z2nLzBtaWnBrl27IAgCDhw4IBUBf1dgYCA2bdoEnU6HWbNmOX2/iIiIiPpbn5Zs+t73voeQkBD8/Oc/x507d2AymTptXxAWFoaPP/4Yy5Yt61OSt2/ffut7fPPNN/D19ZV+Pn36NH7961+jsrISbW1tCA8Ph16vR0ZGhlNd9Hlr1D2K17q75kzo4dLP4a6pqQlXr17F9OnTMWLECEenQ0RERC6I141ERENbc3MzsrOz8ejRI6lt4sSJSE9P71ERy40bN6TC2fLycrsxcrkcs2fPRlJSErZu3YoJEyb0OX8iIiJnc+fOHQiCIC1sAgDTp0/HypUroVQO7V07RFHE2bNnYTAYUFBQgAcPHtiNc3d3x/Lly6HT6bB8+XJ4eHgMcqZEROSqKisrUVRUBJvNBuDFBM3ExETExsY6OLOumUwm7Nu3DwaDAXv37u1Uv/EqPz8/JCYmIj09HWlpaVCre3ZfloiIiGgo6fMdlKVLl2Lp0qW4e/cuqqur0dLSAk9PT4SHh2P8+PH9kCKkhyGRkZGIioqyG/Pqg5a8vDz8zd/8DVQqFWJiYqBSqVBaWoof/vCHuHjxIn7605/2S179QatRIjpYi2u1b9+yNjpYC63GNW96DZd+DkctLS3YvXs3DAaDNIMxKioKV69ehVwud3R6RERE5GJ43UhENHQ9ffoU2dnZnbZUnjp1KtLS0rpV5HP79m3k5+fDYDCgrKysy7h33nkHycnJ2LJlC6Kjo/sjdSIiIqf07bffYs+ePVJhDwAsWrQICxcudKrFRPqTKIooKyuTdki8c+eO3TiVSoWlS5dCr9dj1apVXPSBiIh67P79+7h06RJEUQTw4rtl2bJlmDVrloMze117ezsOHjwIQRCwc+dOtLS02I3z8fFBQkICVq9ejbVr1/ZqNxgiIiKioajfnjiHhoYO2FZ4V69eBQBs3rwZOp3ujbG3b9/G3/3d38HLywvZ2dmYMmUKAKC2thZbtmxBUVER4uPj+7w6bn9RK+T4ID4cH+WVvTX2w/gIqBWuWZQ4XPo5XLycwSgIAvbs2fPaDMYbN26gqakJI0eOdFCGRERE5Kp43UhENDQ1NjZi27ZtaG5ultpmzZqFlJSUNxbQPnjwAPn5+RAEAWfOnOkybsqUKUhOTsamTZswc+bMfiscslhtMFttMJosaDKZ4a1RQ6tRQq2QQ8nvICIichBRFPH111/j1KlTUptCocDq1asxdepUB2Y2cK5duwZBEGAwGHDz5k27MQqFAgkJCdDr9Vi9ejXvTxMRUa/dvXsXV65ckX5Wq9VYsWIFpk2b5sCsOuvo6MCRI0cgCAKKiorQ1NRkN27EiBFYvHgxVq1aBb1eD09PT2msW9/UxrEuEREREbpZRPvqLOa+6O2qlC9Xou3ORelvfvMbWK1W/OEf/qFUQAsAwcHB+H/+n/8Hf/RHf4Tf/OY3TlNEq1TIkRgVgI2xIcgprekybmNsKBKi/F32onW49HMo68kMxg8//JA3KImIiKhXeN1IRDT01NXVIScnB62trVJbTEwMkpOT7d4ramhoQGFhIQRBwMmTJ6VVf75r4sSJSEpKwoYNGxAbG9vvK+61mi04XNGAL0qqO62QHh2sxQfx4UiMCoCHmiuiExHR4DKbzdi1axcqKyulNk9PT+j1eowdO9aBmfW/mzdvSivOvlxs5btkMhni4+Oh0+mwdu1ajB49epCzJCKioeabb77pVECr0WiQlpaGSZMmOTCrF6xWK06cOAGDwYDt27ejsbHRbpyHhwfi4+OxYsUKbNiwAd7e3tJrHOsSERERva5bVz/9sfWdTCaTimF7qry8HG5ubpgwYcJbY48ePQoASE5Ofu21+fPnY8SIEbhy5QoaGhoQEBDQq3z6m4daiU9ToxATNgqfl1S9drH6YXwEEqL8Xf5idbj0cyixWCw4cuQIDAYDduzYgWfPntmNe3UGo06ng5eX1+AmSkREREMKrxuJiIaOmpoa5Obmor29XWpbsGABlixZ0qno9cmTJygqKoLBYMDRo0e7nNA9fvx4JCcnY926dVi4cGGvJ2y/TavZgp/sq7A7oeNarREf5ZVhY2woPk2dzO8jIiIaNG1tbcjOzkZdXZ3U5u/vj3Xr1sHHx8dxifWju3fvIj8/HwaDARcvXuwybv78+dDpdMjIyEBwcPAgZkhEREOVKIo4evQoTpw4IbV5enoiPT0d4eHhDsvLZrOhtLQUBoMBBQUFqK+vtxvn5uaGuLg4pKamYtOmTfDz83sthmNdIiIiIvu6deXT1Yofg+HevXswGo2YNGkS8vLyUFxcjNu3b0OtVmP27Nn48MMPMX36dAAvtgZ8/PgxVCqV3QtZhUKB8PBwXLp0CdevX3eaIlrgRaFAytRAJET54+nzdhhbOzDSyw1ajWpIbZvwaj+NJguMbR3Ququ4PYQT6ekMxuXLl2Pjxo2dZjASERER9dVwuT4mIhrKqqqqIAgCOjo6ALyYYL1o0SLExcVBJpOhqakJO3fuhCAIOHjwICwWi933GTNmDJKTk5GVlYXExEQolQP7IM9iteFwRcMbV0QHgJzSu4gJ80XK1EB+LxER0YBramrCuXPn0NbWJrVFRkYiIyMDbm5uDsys72pra1FQUACDwYDS0tIu42bPng29Xo+srCyEhIQMYoZERDTUiaKIr776CmfOnJHa3N3dkZGRgfHjxzsknwsXLkgrst+7d89unEqlwvz587Fs2TJs2bIFQUFBXb4nx7pEREREXevWU4dt27YNdB5derlFz/Xr1/H3f//3mDVrFmJjY1FZWYmvv/4aJSUl+OlPf4pVq1bh4cOHAAA/P78uVyLx9/cHACm2v4iiCKvV2qf3kAFQwoamurtQKBQY5R8OuVwGoO/v7UxkANwUMoz2UmG0l+qVV4ZWP196tU/O2r+XMxgLCgq6NYNx2bJl2LhxY6cZjM7at4HgCueUeobntO8UCsWgHq8/vncBnvuhiOd0aBku18fDDf9O+84Vv3d53oeet53T69evo6ioSHpNoVBg8eLFmDZtGvLy8pCfn48DBw50WqH2VQEBAUhISEBGRgZSUlKgUv3+/sFAf4bMVhGfH6vuVuznJVVIiPKHDI6bgN6f+Lc69PCc9h2/d8kZVFZW4vTp053O57vvvoukpCTI5XKXPM8PHz5EUVER8vPzceLEiS4Xc5k2bRqysrKQmZmJyMhIqd0V+/wq/p0OPTynfeeK37kAz/1QYLPZsG/fPpSVlUltHh4emD17NoKDgwftvIqiiCtXriA/Px8FBQWoqqqyG6dQKDB37lwkJSXh/fffx7hx46TX3pQrx7qv/39yXTynfTfY37tERM5OJjpymdlu+Oyzz/CrX/0KkZGR+OUvf4nQ0FAALy5mf/3rX+NnP/sZ1Go19uzZg0ePHmHDhg0ICwvDgQMH7L7fn/7pn2LPnj3467/+a2zevLnP+VVUVKC1tbXP70M02ERRREVFBQ4dOoRDhw51WTirVCoxffp0zJ8/H8uXL8fo0aMHOVMicgWzZ88elOPwe5eIiIjfu+T87t+/j0uXLknFMHK5HDabDadOncKJEyc6raD3Km9vb8ydOxeLFy/GokWLoFarBzNtAIBGo4F3UCje+/tj3f6dU3+xCE11d2EymQYuMSJyGH7vkiOJoojq6mpUVFR0ap86dapDVsXrq6amJhw9ehSHDh3C+fPnuyx4CAkJwdKlS5GUlOTQ7bOJaHDxO5ccwWazoaysDLW1tVKbl5cXZs+ejREjRgxKDnfu3MHBgwdx6NAh3L59226MTCbDlClTEBMTgxUrVvR4RXaOdYnouwbre5eIyFUM2P53LS0tsFqtfd7i/eOPP0ZmZia8vLzg6+srtcvlcnzwwQf49ttvcfToUeTl5SE5ORnAi4vIt3Hy2mGiASGKIm7duiUNxO7fv283TqFQIDo6GrGxsVi5cuUbt/4gIiIiIiIieunOnTvSrkIAYLFYYDAYcOvWLbvxXl5emDt3LhYuXIjExES4u7sPVqp2KRQKNLWae/Q7xtYOrt5BRET9zmaz4erVq6ip+f2Wyy/v2/a0cMaRWlpaUFJSgkOHDqG0tBQWi8VuXHBwMJKTk5GUlISJEyd26zkPERFRX1itVly4cKHTDrZarRazZ8+Gp6fngB77/v370kJHN27c6DJu4sSJiI2NxYoVK/o0sYRjXSIiIqI361MRrSiK2L9/P9RqNRITEwG8uCHy53/+5zh69CgA4J133sGPf/xjRERE9C5BpfKNN4QSEhJw9OhRXLlyBWvWrAGALlc0ASBtE+jh4dGrfLqi0WgwadKkPr+P1WrFlStXALzYpogXpq7PGc7p9evXIQgCCgoKXlu14CW5XI7Zs2cjMTERW7Zs6bQ1FnXmDOeU+hfPqevh9y51hed06OE5HXp4Tl1Pf3zv8rwPPfbO6cmTJzsV0La0tCA7OxsNDQ2dftfLywvx8fFYuXIldDrdoK3u012PWnr2YHGklxtGBw6NMTT/VocenlPXw+9dAgCTyYTt27d3KqB1c3PDO++8g4SEBKc/p8+fP8e+ffsgCAL2798vPZf5rjFjxiAzMxNZWVl49913h1XhLP9Ohx6eU9fDe8zDm9lsRn5+fqcC2jFjxmDt2rXw9PQckHN67949FBYWQhAEnD9/vsu46OhoJCUlYePGjZgxY0a/HBvgWJd/p0MLzykREfW3XhfRdnR04A//8A9x7tw5LF26VCqi/d//+3/jyJEjUlxZWRk2b96MvXv3wsfHp88Jf9fLFTJNJhMCAgIAAI2NjRBF0e4Nl5cXwv7+/v2ah0wm6/cvZoVCwS/7IWYwz+nt27chCAIMBgMuXbrUZdyMGTOQnJyMLVu2YMqUKYOS21DCv9Ohh+fUNfB7l7qD53To4TkdenhOXUN/f+/yvA8tNpsNJ06cwIEDB+Dl5SW1NzU1Ydu2bXj8+DGAFw+o4+PjsWLFCqxfvx4jR450VMpvpdWoEB2sxbVa41tjo4O10GpUQ/Izzb/VoYfn1DXwe5eePHmC3Nxc6TsUePE8IyoqCiNGjHDac9rW1oYDBw5AEATs2rWry63S/f39kZmZCb1ej/nz50Mulw9yps7HWc8p9R7PqWvgPebhy2QyITc3t9OOnePHj0dmZiY8PDxgtVql9r6e0/r6ehQWFsJgMODUqVNdxk2cOBHJycnYsGEDYmJiBmRiCce6L/DvdOjhOSUiov7Q6yLagoICnD17Fu7u7tIsvadPn2Lfvn2QyWT45JNP8N577+FnP/sZTp8+jd/+9rf4wQ9+0OPj/PjHP0ZdXR0+/vhjTJgw4bXX6+rqAACBgYHw8fFBQEAAGhoacPfuXYwfP75TrNVqRXV1NQD0y8xC6h2L1Qaz1QajyYImkxneGjW0GiXUCjmUCt4w64v79+8jPz8fBoMB586d6zIuOjoaycnJ2LRpE2bMmDGsZvgTERERERFR34iiiNLSUvzbv/0bDh8+jDlz5iAmJkZ6/fHjx9i2bRva2tqQkJCAlJQUbNq0qd8nNA8UtUKOD+LD8VFe2VtjP4yPgJr3MoiIqJ/cvXsXgiDAZDJJbREREVi1ahVu3rzpwMzsM5vNOHz4MARBQHFxMYxG+0U5vr6+WLt2LfR6PeLj41nkQEREDvP8+XPk5OSgvr5eaouMjERGRgbc3Nz65RiNjY0oKiqCIAg4duwYbDab3biwsDAkJydj3bp1iIuLG/CJJRzrEhEREXWt10W0+/fvh0wmwy9/+UvMnz8fAFBSUgKLxYKIiAh8//vfBwD84z/+IxYvXoyjR4/2qoj22rVruHDhAiZMmICPP/74tdd37twJAFi0aBEAID4+Hvn5+Th48KCUw0unTp1Cc3MzJk+ejMDAwB7nQn3XarbgcEUDviip7jTLLTpYiw/iw5EYFQAPda8/lsPSyxmMgiDg5MmTXcYNxgxGIiIiIiIiGppEUcS3334LQRAgCALu3r0LuVyOVatWddpe8uHDh6isrMRf/MVfYPPmzRgzZozjku4lpUKOxKgAbIwNQU5pTZdxG2NDkRDlzwnBRETUL8rKyrB79+5OhTazZs1CSkqKU93LtVgsKCkpgcFgQFFREZ48eWI3TqvVYs2aNdDpdEhMTIRKpRrkTImIiDozGo3Izs5GY2Oj1BYVFYU1a9b0+Xvq2bNnKC4uhiAIOHz4MCwWi924sWPHIjk5GTqdDgkJCYM6sYRjXSIiIqKu9bpa8ebNmxgzZoxUQAu8KFKVyWRYuHCh1Obr64uQkBDcu3evV8fZsGEDLly4gN/85jeIiYlBbGwsgBeryn722Wc4d+4cxo8fj7S0NCl++/bt+OKLLzB37lzpQU5tbS3+7u/+DgDwwQcf9CoX6ptWswU/2Vdh96L8Wq0RH+WVYWNsKD5NncxC2rd4/Pgxtm/f7nQzGImIiIiIiGhouXr1KgRBgMFgwK1bt6R2hUKBtWvXYsqUKVKb1WrF9773vU5Fta7KQ63Ep6lRiAkbhc9Lql6bCPxhfAQSovx5/4KIiPpMFEUcOXKk0wIJCoUCCxcuRFxcHGQyWadtpR3BZrPh1KlTMBgMKCwsxMOHD+3GeXh4YNWqVdDr9Vi6dCnc3d0HOVMiIiL7nj59im3btuHZs2dS2/Tp07Fy5Uoolb0b17W0tGD37t0wGAw4cOAAzGaz3bjAwEAkJSUhIyMDqampvT5ef+BYl4iIiMi+Xl/9tLa2Yty4cZ3avvnmGwDotIUf8OKGT0dHR6+Os3z5cpw9exYGgwFbt27FO++8g4CAAFy9ehUPHjzA6NGj8ctf/lLaXmHy5Mn4wQ9+gM8++wzr16/H3Llz4e7ujjNnzqC1tRWZmZlITU3tVS7UexarDYcrGt44qw0AckrvIibMFylTAzm77TuamppQXFwMg8HgtDMYiYiIiIiIyPXduHFDWnH22rVrr72uUqmg0+kQGRkptQUFBSErKws+Pj6DmOnA8lArkTI1EAlR/jCaLDC2dUDrroJWo4RaIed9CyIi6rOOjg4UFxejvLxcanN3d0dKSgqmT5/uwMxeFPeePXsWgiAgPz8fDx48sBvn5uaG5cuXQ6/XY/ny5fDw8BjkTImIiN7s0aNH2LZtG1paWqS22bNnIyUlpcfPUU0mE/bt2wdBELBnzx6YTCa7cX5+fkhMTER6ejpWrVol1TI4A451iYiIiF7X6yLagICATrONKysr0djYCKVSiXfffVdqN5lMqKmpgZ+fX6+T/Nu//VvExsYiNzcX5eXlKC8vR1BQEN5//318//vfh6+vb6f473//+4iIiMBvf/tbXL58GTKZDBEREVi3bh3WrFnT6zyo98xWGz4/Vt2t2M9LqrhFxO+44gxGIiIiIiIicj137tyRCme//fbbLuNmz56N1NTUTg8ax44dC51OBy8vr8FIdVApf/cA0UOtRKA3V9MjIqL+09zcDIPBgNraWqlt5MiRWL16NUJCQhySkyiKKCsrk64J7ty5YzdOpVJh6dKl0Ol0WLVqFbRa7eAmSkRE1E11dXXIyclBa2ur1BYbG4ukpKRu7+DZ3t6OgwcPQhAE7Ny5s1Mx7qt8fHyQkJCAtLQ0ZGRkQKPR9EsfBgLHukRERESd9brSLjIyEseOHcP+/fuRkpKC3/72twCAd999F56enlLcz3/+c7S2tmLhwoV9SjQlJQUpKSndjk9ISEBCQkKfjkn9x2iyoLzO+PZAANdqjTCaLMN2m4ihMIORiIiIiIiInN+DBw+Qn58PQRBw5syZLuOmTJmC5ORkZGVl4cqVK6irq5Ne8/PzG7IFtERERAOlvr4eeXl5MBp/f8987NixWLt2rUNWdS8vL4fBYIAgCLhx44bdGIVCgYSEBOh0OqxZswYjR44c5CyJiIh6pqamBrm5uWhvb5fa4uLisHjxYshksjf+rsViwfnz5/GLX/wCxcXFePbsmd24ESNGYPHixVi1ahXHxkREREQurNdViuvXr8fRo0fxJ3/yJ/ibv/kbGI1GyGQybNiwAcCLlWn//M//HDdv3oRMJsPGjRv7LWlyPU0m+yuodsXY1jGsZr0NxRmMRERERERE5HwePnyIwsJCGAwGnDx5EqIo2o2bMGECkpOTsX79esybNw8tLS3Izs7Go0ePpJiAgADMnDmTY1MiIqIeuH79OrZv346Ojg6pbcqUKYO+UMLNmzelFWevXr1qN0Ymk2HhwoXQ6/VYu3YtRo8ePWj5ERER9UV1dTUMBoP0fSuTybB48WIsWLCgywJaq9WKEydOIC8vD/n5+V0Wznp4eCA+Ph7Lly/Hxo0b4e3tPVDdICIiIqJB0usi2ri4OHz66af47LPP0NTUBKVSiT/6oz9CYmIigBcXojdu3IBKpcJPfvITzJkzp9+SHsqsVitu374NURQRHByMwMDAt86EcwXeGnWP4rXuqgHKxHlYLBYcOXIEBoMBO3bs4AxGIiIiIiIiGhBPnjxBUVERDAYDjh49CpvNZjdu/PjxSEpKwrp16xAfHy9tbfn06VNkZ2fj6dOnUmx0dDRCQkKgUCgGpQ9ERESuThRFlJaW4uDBg1KbTCZDbGwsEhMTu72ldF/cvXtXKpy9ePFil3Hz5s2DTqdDZmYmgoODBzwvIiKi/lRZWYnCwkJYrVYAv19Nfd68ea/F2mw2lJaWwmAwoKCgAPX19Xbf083NDXFxcUhNTcWmTZvg5+c3oH0gIiIiosHV6yJaANi8eTPWrFmD27dvY+zYsfD19ZVeGz9+PD799FOkpKRwdnIPnD59GteuXQPwYgslrVaLiIgITJgwAeHh4YM6E70/aTVKRAdrca3W+NbY6GAttJo+fTSd1ssZjIIgoLCwEI2NjXbjOIORiIiIiIiI+qKpqQk7d+6EIAg4ePAgLBaL3bgxY8YgOTkZmZmZSEpKglLZeTze2NiIbdu2obm5WWqbNWsWkpOTu1y1joiIHE+j0XCigxOxWq3Yv38/Lly4ILWpVCosWbIEMTEx3VpIo7fntLa2FgUFBTAYDCgtLe0ybvbs2dDpdMjKykJoaGiPj0NEROQMrly5gh07dki7riiVSixdurTTgl+iKOLChQvSxJJ79+7ZfS+lUon58+dj2bJl2Lp1K4KCggalD0REREQ0+PpcqThixAhMnz79tXY3Nzds3ry5y9/7+OOPce3aNRw+fLivKQwp391G0Wg04ttvv8W3334LuVyOcePGITIyEpGRkQgICHCZVWrVCjk+iA/HR3llb439MD4CasXAz7ofLDabDZcuXcKhQ4dQUlKCuro6u3GcwUhERERERER98fz5c+zevRuCIGD//v1ob2+3GxcQEICkpCSsXbsWy5cvh0plfzeYuro65OTkoLW1VWqLiYlBcnLya/cviIjIOVisNpitIryDQtHUasajFjO0GhXUCjmUQ+ieK/CyrzYYTRY0mczw1qih1Sidrq9tbW0oKChAdXW11Obl5YUVK1Zg0qRJb/393pzThw8fYvv27RAEAcePH+/ye3vq1KnQ6/XQ6XSIjIzsXQeJiIicxIULF7Bnzx7pZ7VajdTUVLzzzjsQRRFXrlyRCmerqqrsvodCocDcuXMxbdo0rFy5EikpKZyYRERERDQMOGy5z0ePHuHBgweOOrzTmj9/Purr61FbW4uWlpZOr9lsNty9exd3797F119/DS8vL6mgNjw8HBqNxkFZv51SIUdiVAA2xoYgp7Smy7iNsaFIiPJ3qpucvfHqDMb8/HzU1Njvs0qlwvz587F06VLOYCQiIiIiIqIea2trw/79+2EwGLBnz55OBa+vGjVqFBISEpCeno7Vq1e/daebmpoa5ObmdirEXbBgAZYsWQKZTCZti0lERM6j1WzB4YoGfFFS3WlHsOhgLT6ID0diVAA81ENjBzBX6euTJ0+Ql5fXaUcyf39/pKenIyAg4K2/35N+PnnyBDt27IAgCDhy5EiX39UTJ06ETqeDTqdDdHR0H3tIRETkHE6fPo1Dhw5JP7u7u2PVqlWQy+X427/9WwiCgIqKCru/K5fLMXv2bCQnJ2Pr1q0ICwtDWVnZIGVORERERM7A8XeRqBOlUomJEydi4sSJiIyMxM2bN3H9+nXcu3fvtRVkWlpaUFZWhrKyMshkMowdO1Yqqg0KCnK6VWo91Ep8mhqFmLBR+Lyk6rWbfh/GRyAhyt8pbm72hiiKuHr1KgwGw1tnML5cuWfr1q3cGouIiIiIiIh6xGw249ChQzAYDNi5cyeam5vtxnl7e2PJkiVYvXo1MjMzuz35tqqqCoIgoKOjAwAgk8mwaNEixMXFOd29BiIieqHVbMFP9lXYXcDgWq0RH+WVYWNsKD5Nneyy919fcpW+1tTUwGAwwGQySW3h4eFYs2YNvLy83vr73eln5vRRmGy+jh2FBTh48KD03f1d48ePh06ng16vxzvvvMPvcyIiGjJEUURJSQlKSkqkNjc3Nzx//hzr1q3DpUuXuvzdGTNmIDk5GZs3b+40sYSTRomIiIiGH9e+WzbEeXl5Yc6cOZgzZw5sNhvu37+P8vJy3L59Gw8fPuwUK4oi7t27h3v37uHo0aPw9PREZGQkIiIiEBERAQ8PDwf1ojMPtRIpUwOREOUPo8kCY1sHtO4qp9xmq7uuX78OQRBgMBi6nMEok8kQFRWFtLQ0/MEf/AG3xiIiIiIiIqIesVgsOHr0KARBQFFREZ4+fWo3zsvLC4sXL8aKFSuwbt06jBgxokfHqaiowPbt26WHhgqFAgkJCZg3b16f+0BERAPDYrXhcEXDG3cAA4Cc0ruICfNFytRAl7wPC7hOXy9duoTdu3d3KsKZOXMmUlNToVS+/bHMm/ppM7fBVHUOzyuP45/+6TxgtV84O2bMGGRlZUGn02Hu3LksnCUioiFHFEUcPHgQpaWlUtvz58/xz//8z3j27Jnd34mOjkZSUhI2bdqEmTNn8vuRiIiIiACwiNZlyOVyhISEICQkBADQ2tqKiooK3LhxAzU1NWhra+sU//z5c1y6dAmXLl2CTCbDmDFjEBERgQkTJiAoKAhyueNukip/VyzroVYi0NvdYXn0xe3bt6XC2bfNYExMTMS7776LiIgIzJgxAwqFYhAzJSIiIiIiIldltVpx8uRJCIKAwsJCPHr0yG6cRqNBfHw8li9fjg0bNmDkyJG9Ot7ly5dRXFwMURQBvNgtZ+nSpZgzZ06v+0BERAPPbLXh82PV3Yr9vKQKCVH+LltE6+x9FUURR48exYkTJ6Q2uVyO+Pj4Hq3o/t1+ihYzTNUX8LzyBEy3zkDsaLf7e/7+/sjMzIROp8N7773n0OcAREREA8lms6GgoACVlZVS26NHj7Bt27bXdmuZOHEikpOTsWHDBsTExLBwloiIiIhewyJaF+Xh4YHZs2dj9uzZEEUR9+/fR0VFBaqrq/Hw4UPpgRcA6fX79++jpKQEHh4eiIiIkFaq9fT0dGBPXMf9+/eRn58PQRBw9uzZLuO+O4PRZrOhrKxs8BIlIiIiIiIilyWKIkpLSyEIAvLz81FXV2c3zs3NDe+99x5SU1OxefNmjB49uk/HPXfuHPbt2yf9rFarsXz5ckyfPr1P70tERAPPaLKgvM7YrdhrtUYYTRZ4qF3z0YAz97WjowM7d+7EtWvXpDZ3d3csXboUM2bM6NF7GU0WXLv/BG13vsXzyhNovVEK0dxqN1buPgL6rAz8weYNiI+P79ZKt0RERK7q8ePHKCwsxOXLl+Hv7y+119XVITs7G62tL74vw8LCkJycjHXr1iEuLo4TS4iIiIjojXg3ZQiQyWQYN24cxo0bBwAwmUyorKzE9evXUVNTA5PJ1Cm+tbUVV65cwZUrVwAAwcHBiIyMRGRkJMaMGcNBxCvq6+tRWFgIQRBw8uTJLuNezmBcv349YmNjOYORiIiIiIiIuk0URXz77bcwGAzIz8/H3bt37cYplUrMmzcPy5Ytw5YtWzBmzJh+Of7Jkyfx9ddfSz9rNBqkpaVh0qRJ/fL+REQ0sJpM5h7FG9s6XHaHMGfta0tLCwwGAx48eCC1+fj4YPXq1QgNDe32+1gsFpSUlOCL/7sN94t2wNbWbDdOptbAY+I8eE6Og/v4Gfh//ywBEwNG9LkfREREzqipqQnFxcUwGAw4evQo1qxZg8mTJ0uv19TUIDc3F35+ftDpdNDr9UhISODuoERERETUbSyiHYI0Gg1mzpyJmTNnQhRF1NXV4dq1a6iurkZDQ0OnVWoBoLa2FrW1tTh+/Djc3d2lVWojIyPh5eXloF44zuPHj1FUVASDwYBjx47BZrPZjeMMRiIiIiIiIuqLq1evwmAwQBAE3Lp1y26MQqHA3LlzkZSUhPfffx/jx4/vt+OLoogjR450mjTq6emJ9PR0hIeH99txiIhoYHlr1D2K17qrBiiTgeeMfW1oaEBeXh6ampqktjFjxiA9PR2+vr5v/X2bzYZTp07BYDCgsLAQDx8+tBsnU6rhNjYanlEL4TklHjLl7/9buPI5JSIisqelpQW7d++GIAjYv38/zGYzVCoV9Ho9IiIipLh79+6hvb0dgiAgNTWVK7ITERERUa/wKnKIk8lkCA4ORnBwMACgra0N169fl1apff78eaf4trY2XLt2TdpyKjAwUCqoHTdu3JAtFH05g1EQBBw6dAgWi8Vu3NixY5GUlASdToeEhIRuD8Q0Gg1nOxIRERERERFu3LgBQRBgMBhQXl5uN0Ymk2HWrFlITk7G1q1bMXHixH7PQxRF7N+/H+fOnZPatFotMjIypJ1uiIjINWg1SkQHa3Gt1vjW2OhgLbQa130s4Gx9vXnzJgoLC2E2/36F3KioKKSlpcHNza3L3xNFEWfPnoUgCMjPz++0gm0nciXcxk6BJnw2PKcugdJz5Gshrn5OiYiIXjKZTNi3bx8EQcCePXs67bbq7u6O9evXIyQkpFPbP/zDP3Rr0goRERER0Zvwzsow4+7ujnfeeQfvvPMORFFEfX09KioqcOvWLTQ0NLy26mp9fT3q6+tx8uRJuLm5ISIiQlqpVqvV9iqH9g4rLDYRRlMHnrZ2YKSHClqNCkq5DG6qwSs0tTeD0Z7AwEAkJSUhIyMDKSkpUKm6P6vfYrXBbBXhHRSKplYzHrWYodWooFbIoVQMrYLkF321wWiyoMlkhrdGDa1GOST7SkRERERE1BO3b99Gfn4+DAYDysrKuoybPn06kpOTsWXLFkydOnXA8rHZbNi1axcuXboktY0cORJZWVkIDAwcsOMSEdHAUCvk+CA+HB/llb019sP4CKhd+F6ds/T1ZRHsV199Je38JpPJEBsb2+X20aIooqysDIIgQBAE3Llzx+57K5VKxMTEYPyM+Thmi4ZS6/fGXFz9nBIRkfMbyGeAZrMZBw8ehMFgwM6dO9HS0vJajIeHB7Zu3Qp/f3+pLSIiAmvXroVGo+nT8YmIiIiIABbRDmsymQxBQUEICgrCkiVL0N7ejhs3bqCyshI1NTWvDVLa29tRXl4urZQTEBCAiIgITJgwAePGjevWSqvP2y04WN6A35yo7rRaQHSwFn8UF47kKQHwdBu4j6XJZML+/fthMBhem8H4qlGjRiEpKQlr1qx566oBXWk1W3C4ogFflLze1w/iw5EYFQAP9dD4ExxOfSUiIiIiIuqO+/fvo6CgAIIg4MyZM13GTZkyBUlJSdi0aRNmzZoFmUw2oHlZLBYUFRWhoqJCahs9ejSysrLg5/fmIh0iInJOSoUciVEB2BgbgpzSmi7jNsaGIiHK36UnvDtDX202G/bv34/z589LbSqVCkuWLEFMTMxr3+Xl5eUwGAwQBAE3btyw+55yuRzvvvsukpKS8P777yM8PBytZgt+sq9iyJ9TIiJybgPxDNBiseDIkSMQBAFFRUV49uyZ3bgRI0YgKSkJs2bN6rSL6OTJk7FmzRqo1epe9YmIiIiI6LtY1UYSNzc3TJs2DdOmTYMoinj48CHKy8tRVVWFurq611apbWhoQENDA06fPg21Wo3w8HBERkYiMjIS3t7er71/a7sFP95bgdyzr9/0u1ZrxCdCGTbEhODT1Kh+LaTtzgxGAPDx8UFCQgLS0tKQkZHRp5mLb7rBea3WiI/yyrAxNhSfpk52+eLS4dRXIiIiIiKit7l//z7+8A//EAcPHuwyZsKECUhKSsL69esxf/78AS+cfamjowOCIKCqqkpqCwoKQlZWFnx8fAYlByIiGhgeaiU+TY1CTNgofF5S9VqRy4fxEUiI8h8S9+cc2de2tjYUFhZ2+i719PTEypUrMWnSJKnt1q1bEAQBBoMBV69etfteMpkMM2fOlFahnzx5cqfXh9M5JSIi59SfzwCtVitOnDgBQRBQWFiIxsZGu3EeHh6Ij4/H8uXLsXLlShQXF+Pp06fS69OmTcOqVaugVPL7j4iIiIj6D68uyS6ZTIaAgAAEBARg8eLFMJvNuHnzJiorK3H37l00Nzd3ijebzaisrERlZSWAF6vYvCyoDQkJgVWU4avyBrsFtK/68kwN3h3vi5SpgXBTvX1l2670ZAbjokWLsGrVKuj1enh5efX6mNKxrTYcrmh44woBAJBTehcxYS/66qorBQynvhIREREREXXHz372M7sFtKGhoUhOTsa6desQHx8PuXxwx0ZtbW3Iy8tDTc3vx2/jxo1DVlZWv4yFiYjI8TzUSqRMDURClD+ePm+HsbUDI73coNWo+mW7ZWfyal+NJguMbR3Quqv6bWtpe54+fYq8vDw8evRIahs9ejTS09MRGBiIu3fvIj8/HwaDARcvXuzyfaZPn46kpCRs2bIF06ZNe+Mxh9M5JSIi59IfzwBFUURpaSkMBgMKCgpQV1dn9z3c3NwQFxeHlJQUbN68GX5+fmhsbMS2bds6PZOeNWsWUlNTu7U7KhERERFRT7CIlrpFrVYjOjoa0dHREEURjx8/xrVr13Dr1i3U1dXBarV2in/06BEePXqEb775BiqVCiGh43H4gQxeMje0iG5vPNavT1QjeUpAj3N8dQbj9u3bO93MfNWrMxjXr1+PkSNH9vhYb2K22vD5sepuxX5eUuXS220Np74SERERERF1x8yZM6X/P2bMGCQlJSErKwtJSUkOWymntbUVOTk5nR5YhoWFITMzs0+7sBARkfNRKuSQQURT3V0oFAqMDowcsoUmyt8VkXqolQj0dh/QY927dw8GgwGtra1SW1hYGObNmwdBECAIAr755psuf3/y5MlITk7Gxo0bMWfOnB6tQj+czikRETmP3j4DFEURFy9ehMFgQH5+fqeJnK9SqVSYP38+li5diq1btyIoKEh6rb6+HtnZ2Z2+d2NiYpCcnDzoE1KJiIiIaHjo9dOb2tpauLm5YdSoUW+NvXHjBu7fv48lS5ZIbVFRUbzR46JkMhn8/PwQHx+P+Ph4dHR04NatW6isrMSdO3dgNBo7xXd0dKDq1k2EAQhzB57Z3PDA5o37Vm802EbAis6DnWu1RjS1dcDD7e0fz77MYBwoRpMF5XXGtwfiRV+NJovLbrk1nPpKRERERETUHZs2bUJ0dDSampqwYMECqFQqh+bT3NyM7OzsThNNJ06ciPT0dLi5vXmSKxERuS6TyeToFIaMy5cvY9euXZ0WkpDL5fiP//gPbN26FaIo2v29iIgIJCUlYcOGDXjvvfd6VDhrD88pERENpp48A7z6oAlnzpfh633FMBgMqKqqshunUCikYtitW7ciNDT0tZh79+4hNzcXbW1tUtuCBQuwZMmSPn+XEhERERF1pdfVbEuWLMGcOXOQk5Pz1thPP/0U9+/fR2lpqdT2ox/9qLeHJiejUqkQFRWFqKgoAMDjx49RXl6Omzdvora29rVVan3k7fCRP0S08iEsogz1thG4b/XGfZs3msUXKwY8a+1AkLf91XBezmB8OcO/OzMYt2zZguDg4H7sddeaTOYexRvbOgZ8pYSBMpz6SkRERERE1F2zZs1ydAoAXmw7nZ2djadPn0ptU6dORVpamsNWxSUiInIVoiji2LFjOH78uNRms9mwa9culJWV2f2dkJAQJCcnQ6fTYcmSJVwtj4iIXFZ3ngF2PL6P55Un0FpxAkv+wf7zWrlcjtmzZyMpKQlbt27FhAkTuny/27dvIy8vDx0dHQBeLOy0aNEixMXFsYCWiIiIiAZUt5+Y2Gw26f+/nFktiqL0P3tEUURtbS3u3bvXabYYDW2jRo1CXFwc4uLiYLFYUF1djQtlV3Dh2g2MkHcecCllIsYqjBirMAK4B6PNDfdt3jA21KDDb5K0Yo8oirh69apUOHvr1i27x+7ODMaB5q1R9yhe6+7YVYn6Yjj1lYiIiIiIyJU8evQI2dnZaG5ultpmzZqFlJQUFtASERG9hcViQWFhIa5fvy61tba2wmAwvLaoQ3BwMJKSkpCZmYmlS5fye5aIiIaErp4BdjyrR2vlCTyvOIGOh9Vd/v6MGTOQlJSEzZs3Y+rUqW893o0bN5Cfny8tziSXy5GQkID58+f3rgNERERERD3Qrbs5VVVVSEtL67SiqEwmw8WLFzFlypRuHWjy5Mm9y5BcmlKpxMSJEzEmNBw59d/gbt1DjJc/xVhFE0bLW6GU2TrFa+XtmCJ/iAM7t+PQHgVGjx6N+vp67N+/H2fOnLF7jJ7MYBwMWo0S0cFaXKt9+xYn0cFaaDWue1N1OPWViIiIiIjIVdTV1SEnJwetra1S28sJp/25Ip6Pj480+ZWIiGgoaG1tRXFxMcrKyuDp6Sm1P3r0CLm5udLq7qNHj0ZSUhLWrl2LlStX8vuQiGiY02g0UCgUjk6jX736DNBibETr9ZN4XnEc5robXf5OdHQ0kpKSsGnTJsycObPbq8devXoVO3bskBb1UiqVSEpKwty5c/ulL0REREREb9OtiraIiAhkZWUhNzdXapPJZF2uQPtdGo0Gf/qnf9q7DGlIUMpl+KO4cHwiGHHVGoSr1iDIYUOQvBnjFU8RKG+GVt7e6XesVivq6+sBACkpKYiNjcWtW7dw8+ZN3LlzB1OmTOnRDMbBolbI8UF8OD7KK3tr7IfxEVArXHdLr+HUVyIiIiIiorexWG0wW20wmixoMpnhrVFDq1FCrZBDOUjjoZqaGuTm5qK9/fdj7AULFmDJkiX9tv2l2WJFh1WEx6hgPG0142GzGVqNCiqFDGrl0HpwTEREQ19bWxsOHDgAQRDwzTffYM2aNfDx8ZFer66uRn5+Pjw8PJCZmYnVq1dj7dq1cHNzc1zSRETkFF6MAUV4B4WiqdWMRy0vxkaDOQYcKE8bH2Fs3XF8/WUu2u+XdxmnHBmMpUuX4i//+x/ivffm93jcefHiRezevVv6WaVSITU1FTNmzOht6kREREREPdbtZSH/5E/+BMuWLQMAiKKILVu2YOLEifjhD3/Y5e/I5XJ4eHhg/Pjx8PDw6Hu25LLcVAokTwnA+rkhyD37YrsrG+R4YPPGA5s3LMZGyO+cxgSxFn5aD0RERLx2E3LkyJF499138e6770Imk2H8+PGIjIyEv78/RFHst4eBfaVUyJEYFYCNsSHIKa3pMm5jbCgSovxdehA9nPpKRERERET0Jq1mCw5XNOCLkupOu3VEB2vxQXw4EqMC4KEe2N05qqqqIAgCOjo6ALyYAL1o0SLExcX125j5ebsFh8ob8OsTr/fze3HhSJoSAE837kJCRETOraOjA4cPH4bBYEBxcTGMRiMiIyOxfv36TvelL126BJvNhn//939HZmZmp9VpiYhoeHOGMWB/e/z4MYqKiiAIAo4ePSqtDPtdCu8AaMJmwmNyPP4oMxV/vWJKr/paWlqKr776SvrZzc0NK1euRHR0dK/7QERERETUG92+mvXy8uq0ZUJwcDDCw8O5jQJ1m1IG/PXyKMwN88WvT1Tj8s27aL1+Cs8rTqD9/jUAwL3fxcrlcowbNw6RkZGIjo6Gr69vp/cSRRG3b9/G7du3cejQIWi1WkRGRiIyMhLh4eEOXwXAQ63Ep6lRiAkbhc9Lql4bPH8YH4GEKH+XGzzbM5z6SkREREREZE+r2YKf7KuwO7nwWq0RH+WVYWNsKD5NnTxgY6OKigps374dVqsVAKBQKJCQkIB58+b12zFa2y348d4KaXLsq67VGvEDoQwbYkLwaWoUC2mJiMjpWK1WHDt2DIIgYPv27Xjy5In02ty5c7Fs2TLI5S8WARBFEW5ubviP//gPjBw50lEpExGRk3KGMWB/aWpqQnFxMQRBwKFDh2CxWOzGufuMhmLcDHhOXgC30HcwbZxvr58BiqKIEydO4OjRo1Kbh4cHVq9ejQkTJvSpP0REREREvdHrq/YjR470Zx40xJktVuy/1oBf7L+IxW530Lq3GLUlx7qcwThuXAiWLk3GunXrsHDhQrS0tKCiogI3btzA/fv3YTabO8UbjUZcvHgRFy9e7FSAO2HCBPj7+ztklVoPtRIpUwOREOWPp8/bYWztwEgvtyGzjcurXu2r0WSBsa0DWnfVoG9bSkRERERENNgsVhsOVzS8cXcOAMgpvYuYMF+kTA3s9zHS5cuXUVxcDFEUAQBKpRJLly7FnDlz+u0YZosVB8sb7BbQvurLMzWYO94XKdMCoVYq+u34REREvWGz2XDq1CkIgoCCggI8fPiw0+tyuRzLli3rtFiIUqnEkiVLEBsb6zS7nxERkfNwhjFgX7W0tGD37t0QBAH79+9/7bnrSwEBAUhOTsbqNelISF4Kk0XW52eAoiji8OHDOH36tNTm5eWFtWvXYvz48X3pFhERERFRrzn31DcaEpqampBfWIS//uwLPLp+Hl/brHbjFF6j4B42C1PeS8bhf/of0Hq6S69ptVrExMQgJiYGNpsNd+/eRUVFBW7fvo3GxsZO7/Py9bt37+Lrr7/GiBEjEBERgQkTJiA8PBzu7u7fPfSAUSrkkEFEU91dKBQKjA6MhEIxNB8iKn83UPZQKxHoPXj/jYmIiIiIiBzJbLXh82PV3Yr9vKQKCVH+/foA9dy5c9i3b5/0s1qtxvLlyzF9+vR+OwYAdFhF/Op49/r5qxPVSJoSACdfcImIiIYoURRx7tw5GAwG5Ofn48GDB3bjvLy88Ad/8AeddkHz9PTE8uXLERUVNVjpEhGRi3H0GLC3TCYT9u/fD4PBgD179sBkMtmNGzVqFJKSkrBmzRqkpaV12v3TG+jTM0BRFLFv3z6cP3/+9+/p7Y3MzEyMGTOm1+9LRERERNRX3XqcER8fD7lcjm3btmHcuHEAgEWLFvXoQDKZrNOWDDS0PX/+XJrBuG/fvi5nMMo9feA+fiY8Jr0HTfgcyBVKPATw3CJC28V7y+VyhIWFISwsDMCL2ZLl5eXSKrXt7e2d4pubm1FWVoaysjLIZDJpldrIyEgEBgYOymoCXQ1EiYiIiIiIyLUZTRaU1xm7FXut1gijydJv23mePHkSX3/9tfSzRqNBWloaJk2a1C/v/yqjqaNH/Wxq64CHG6toiYhocIiiiEuXLkmFs7dv37Ybp1QqERsbi+TkZGi1Wjx79kx6zc/PD+np6QgKChqkrImIyBU5cgzYU2azGQcPHoQgCCguLkZLS4vdOB8fHyxZsgSrV69GRkYGNBpNv+dis9mwc+dOXL58WWrz9fWFTqeDv79/vx+PiIiIiKgnunXF3tDQAJlMBovFIrXV19f36EDc9mjoezmDURAE7N69u8vCUblGC/fQd+AxcT40E2IgV6pfi3nW2oEg7+4N0Ly8vDB37lzMnTsXNpsN9+7dQ3l5OW7fvo1Hjx51ihVFETU1NaipqcGRI0fg6ekpFdRGREQMyKCQiIiIiIiIhq4mk/1Jo10xtnX0efcOURRx5MgRnDx5Umrz9PREeno6wsPD+/TeXXna2tGj+J6M64mIiHqrvLwcgiDAYDDgxo0bdmMUCgXmzJmD5ORkvP/++1AqlRAEoVMB7fjx45Geno4RI0YMUuZEROSqHDEG7AmLxYIjR45AEAQUFRV1+r571YgRI7Bo0SKsWrUKOp1uQL8DLRYLioqKUFFRIbX5+/tDp9N1WhGeiIiIiMhRulVEq1Ao8NFHH2H06NFS209/+tMBS4pcx6szGHfu3Inm5ma7cVqtNzoCo+ExIRYek+ZDrnrzYNHHQ9WrfORyOUJDQxEaGgrgxYq4FRUVuH79Ou7fv4+2trZO8c+fP8elS5dw6dIlyGQyjBkzRiqqDQ4OZvE3ERERERERvZG35vWJoW+ide/dePclURSxf/9+nDt37vfvqdUiIyND2j1oIIzs4Ti9t+N6IiKit7l165ZUOHv16lW7MTKZDDNnzkRycjK2bNmCyZMnAwCuXr2K4uJiWK1WKXbGjBlITU2FSsXvLiIiervBHgN2h9VqxYkTJyAIArZv3/7aIkMveXh4ID4+HsuXL8f69esxcuTIAc+to6MDgiCgqqpKagsKCkJWVhZ8fHwG/PhERERERN3RrSJaLy8vHDp0CB988IHU9n/+z//BO++8g5///OcDltxwpdFooFAoHJ1GlywWC44ePQqDwYAdO3bg6dOnduO8vLywePFirFy5EivXZOAPc6/iWu3btzeJDtb224DS09MTc+bMwZw5cyCKIu7fv4/y8nJUV1fj0aNHEEVRin35+v3793Hs2DF4eHhIK9RGRkbCw8OjX3IiIiIiIiKioUOrUSI6WNv98a6m99t42mw27Nq1C5cuXZLaRo4ciaysLAQGBvb6fbtDq1H1rJ+D8KCYiIiGj7t37yI/Px+CIODChQtdxk2fPh1JSUnYvHkzpk+fLrWLoojjx4/j2LFjUptcLkdcXBzi4+O5mAIREXXbd8eACrkMEwO84OWmREu7BTcaWmC1vXj+2Ncx4JuIoojS0lIYDAYUFBSgrq7Obpybmxvi4uKQkpKCzZs3w8/Pb0Dysae9vR25ubmoqamR2saNG4esrCx4eXkNWh5ERERERG/Trat2k8n02lYPtbW1CAoKGoichi2L1QazVYR3UCiaWs141GKGVqOCWiGHUiF3aG5WqxUnT56EIAgoLCx84wzGhQsXYsWKFZ1mMJotVnwvLhw/EMreeqzvx4VDpej/m5YymQzjxo2TVuZpbW1FZWUlrl+/jnv37sFkMnWKb21txeXLl3H58mUAwJgxYxAREYEJEyYgODgYcrljzwkRERERERE5nlohxwfx4fgor+ytsR/GR0Ddy/G9ve0vR48ejaysrEF5CKpSyBw+riciouGltrYWBQUFEAQB33zzTZdxkRMnITZuETZs2Ii4+TFwUyo63U+3WCzYtWsXrly5IrW5ubkhOTkZs2bNGtA+EBHR0PNyDPij4mvYGBuK9TEhaDNb8aTVDF8PNdxUcuSdvYec0rt9GgPaI4oiLl68CEEQIAhCp+LUV6lUKsybNw/Lli3Dli1bEBwc3G85dFdrayu+/PJL1NbWSm3h4eHIyMiARqMZ9HyIiIiIiN6kW0W0Y8aMwZ07d/Bnf/ZnmDt3LtTqF9tUPH78GMXFxd0+2OrVq3uT47DQarbgcEUDviip7rSqS3SwFh/EhyMxKgAe6oGZqdiVlzMYBUFAfn7+G2cwLliwAKmpqV3OYFQrFUiaEoD1c0OQe9b+gA4ANsSEIHFKANTKgV+J18PDA7NmzcKsWbMgiiJqa2tRXl6OqqoqPHz4sNMqtQDw4MEDPHjwAMePH4dGo5FWqI2IiOBsSSIiIiIiomFKqZAjMSoAG2NDkFPa9Xh3Y2woEqL8ezVJ1hm2v3TGcT0REf1/7d15fFT1vf/x92SWZJIwgQBJ2AIESAgJFGQJe5QkIFFkEzeo1npFbvu41D7sz/6K3e3V1vZeb61tUevPXlmDFa0LCuKCLLKI4JIEUMJqIGwhA0ySyUzm9wdlICYsgWSWM6/n4+HjIed8M/kcvjrvOWc+53uM5+jRo3r55Ze1dOlSffjhh42u0Z6TltZLGUNGqTJlqMpjemityaS1K6uU9fnGBtfTz5w5o6KiIh04cMD/swkJCZo8ebJ69uwZqMMCABiIxRylgsxkDe/ZXmt2HdXsFz9u9N3ud0b20Ds/HKs2MZZrXijJ5/Ppiy++8DfOfvXVV02OM5vNysnJ0fjx4/Wd73xH3bt3v6bfey1OnTqlBQsWNFiUKT09XdOmTVN0dHTQ6gIAAAAu5oq6Mm+77Tb97ne/05tvvqk333xT0tlVPfft26ef/OQnV/SLTCYTTbQX4XJ79NiK0ia/bCsud2ruku2aNby75hX2bfVG2gvvYFy2bJn27dvX5LgL72C8++671aVLl8u+dly0RY/clKmcnol6dm3jZuHZY9KU3y9ZcdGBbRaWzv732aVLF3Xp0kUFBQWqqanxr1K7f/9+uVyuBuOrq6v1xRdf6IsvvpB09svL3r17q3fv3uratSur1AIAAABABIm1WTSvMFM5Pdtr/prdjc535+T2Ul5m0lWd09fU1GjJkiUh8fjLUD6vBwCEr8rKSr3yyisqKirSu+++K6/X2+S41NRUjR8/XlOm3aoN1SlatPmgJOnCtc8vvJ4+e1h7vfLSsgZP2evcubOmT5+uxMTEVjwiAIDR+SQ99d6XF/1u9//84zP/d7tXa+fOnf7G2ZKSkibHREVFafDgwSooKNB3vvMd9enT56p/X0s5efKkFixYoBMnTvi3ZWVlafLkybJarUGsDAAAALi4K/pW495775XP59Pbb7+tyspKeb1elZeXy2azBeSRgUbm8dZrdWnFJVerkaSFG/cpp2eiJmanXPMdi0354osvtHTp0iu6g7GgoED33nvvVd3BGBdt0cT+KSrol6yqmjqddNWpbaxVjhirrGZTyKxUExMTo4EDB2rgwIHy+Xw6fPiwiouLVVZWpsOHDzdaAeHQoUM6dOiQ1q5dq5iYGKWlpfmbamNjY4N0FAAAAACAQIm1WTQxO0V5mUlyVnvkrKmTI8Yqh90imznqqs7lXS6XFi5c2ODJMD179tSMGTOC9vjLBuf11XU6WR2a5/UAgNB26tQp/fOf/1RRUZFWrlypurq6Jsd17txZBQUFmjFjhiZMmCCZorTii0NatGT7JV//vc2fKbp4r+o95183IyNDkydP5hHSAIBr0prf7e7Zs8ffOLt9+/aLjhs4cKAKCgp09913Kzs7uznlt6rjx4/rxRdflNN5/obLQYMGqbCwUBYLN1sCAAAgdF3xp9Xvfve7+u53v+v/c9++fdW/f38tWrSoVQqLFG5vveZ/UHZFY+ev2X3Vj35syq5du1RUVKSlS5de9A5Gk8mkIUOGtOgdjDaLWTaLFBttUaeE0L9gaTKZ1KlTJ3Xq1EmSVFtbq507d2rHjh3av3+/zpw502B8TU2NSkpK/H+nSUlJatOmjZKSkuT1emU284UiAAAAABiR5V/NsrE2i1ISYq7ptUL58Zc2i1lmk1eu4+WKs1qVFN+Fc10AwGW5XC69+eabWrp0qVasWKGampomx3Xs2FEFBQWaPn26Jk2a1GDVOpfbc9nr6RnmIxpu3a96z/ltOTk5ys/Pp4EHAHDNWvq73YMHD+qll17S0qVLtXnz5ouO69evn8aPH69vf/vbGjRokEwm00XHBkNFRYUWLFjQ4HvTYcOGacKECTzBEwAAACHvqq8YDR06VBkZGS1ZS0RyVntUcsh5+YE6+/gPZ7Xnqh7/eM6ePXu0bNkyLV269JJ3MH7rW9/S+PHjQ+4OxlAQHR2tAQMGaMCAAfL5fKqoqFBJSYl2796tw4cPq76+vsH4I0eO6MiRI9q9e7e2bt3aYJXahISEIB0FAAAAACBUVVZWasGCBaqsrPRvy87O1uTJk0Oq+efc47G7dOkS3EIAACGrtrZWb7/9tpYuXarXX3+90YIE5yQmJiovL09TpkzR9OnTL3rDyKWup5vk0zDrAfWzHPFvM5stGjfuBo0YMSLkmo0AAOGpJb7braio0D/+8Q8tXbpU69atu+jPp6enq6CgQDNnztTw4cNDNssOHjyoRYsWNbhBZtSoUcrLywvZmgEAAIALXfU3LwsWLGjJOiJWVbW7WeOdNXXNXs3m66+/1rJly1RUVKRNmzZddFyo38EYikwmk1JSUpSSkqJx48bJ7XZr165d2rFjh/bt26fTp083GO92u7Vjxw7t2LFD0tlVFXr37q0+ffooNTWVlXsAAAAAIMIdPXpUCxYs0KlTp/zbrrvuOhUWFnLOCAAIC3V1dVq9erWKior0yiuvNHik84USEhJ0ww03aPLkyZoxY4bi4uIu+9oXu55ukVfX28rUzVzl31bts6ggb6JGjrju6g4EAIAmXO13u8ePH9fy5ctVVFSk999/v9GiPOf06NFD48eP15133qmxY8eG/Cque/fu1ZIlS+R2n/17MZlMys3N1dixY/muGQAAAGEjdJYviVAJdluzxjtirJcfpPN3MBYVFWndunXy+XxNjguXOxjDhc1mU3Z2trKzs+Xz+XTs2DF9/vnn+vzzz1VVVdVoHo4ePaqjR4/qo48+ktVqbbBKbdu2bYNzEAAAAACAoDh06JAWLlwol8vl35aTk6Px48eH/BenAIDI5vV69cEHH6ioqEgvv/yyTpw40eS4uLg4XX/99br55pt15513NvtJXU1dT48z1Srf9pUSo6r9207Wx2hNbU892K9f8w4EAIDLaM53u/W1Z/T28iI9+PpyvfPOO/J4PE2O69Kli8aPH6/bbrtN+fn5IfUEkkv58ssvtWzZMv9xRUVFady4cRo5ciTfOQMAACCshMcncANz2C3K6uxQcfnlH/uR1dkhh/3iU3bixAktX75cS5cuNdQdjOHKZDKpY8eOys3NVUJCgjwej+Li4rRr1y7t27ev0QoMdXV12rlzp3bu3ClJ6tChg7+htnv37mFzwgwAAAAAaL79+/dr8eLFqq2t9W8bPXq0xo0bx5ePAICQVF9fr/Xr16uoqEj/+Mc/VFFR0eS4mJgYjR07VoWFhfr2t7+txMTEq/6d37yenmw+o/zo3bL5zq8KeMjbRmvcPZTWueMlr6cDAHA1Lvfdbr27WtVfbdaZHWtVW7ZVP/DWNTkuOTlZ48eP1/Tp01VYWCir9coWUgoVxcXFWr58uf/7aLPZrIKCAuXk5AS5spZht9t5GgwAAEAE4QpSkNnMUXogN01zl2y/7Ng5ub1kMzdseK2qqtI///lPLV26NGzuYHR7vKrz+uSsrlOlq07tYq1y2K2ymk2yWYx7MmKxWJSZmans7GxJ0rFjx1RSUqKvvvpK5eXl8nq9DcYfO3ZMx44d08aNG2W1WtWjRw9/U+21XGgGAAAAALQOj7debm+9nNUeVVW7lWC3yWG3yGaOksV88RtYd+/eraKiItXVnf1y1WQy6frrr9eYMWNooAUAhBSfz6ctW7Zo6dKlWrZsmb7++usmx9lsNo0aNUo33nij7rnnHiUnJ7fI7z93Pf1nrxbrjj4mecu2y+s9f028d2aWYuIz9dGWr5u8ng4AwLVq6rvd+rpa1ZRt1ZnSD1W9e4t8ntomf7Z9+/bKz8/XtGnTNHnyZEVHRweo6pa1fft2vfbaa/4ncFqtVt1444267rrrglzZtTt7Xu9TQqfuqnK5dfS0Ww679bLn9QAAAAhvNNEGmcUcpfzMZM0anqqFG/dfdNys4d2Vl5kkizlKZ86c0euvv66ioiK99dZbDVapuVBycrIKCgp06623hswdjGdqPXqnpELPrS1rcIdmVmeH7h+TpoJ+yYqLjoz/LDt06KCxY8dq7NixqqurU1lZmUpKSrRv3z5VVVU1GFtXV6cvv/xSX375pSQpMTHR31Dbo0ePkJhbAAAAAIhkLrdHq0sr9Myaxue7D+SmKT8zWbG2xue7paWlevnll/03VprNZuXl5WnEiBEBqx0AgEvx+Xz69NNPVVRUpKKiIu3Zs6fJcRaLRcOHD9eECRN0zz33qFu3bi1ei8Ucpfy+SbKO3KnNG9b6t9f7pE89nbT5UJK+M8qhd37YS21iLDS7AABa3De/263eu13H/vlb1decbnJ8QkKC8vLyNHnyZM2YMUN2uz3AFbeszZs366233vL/OTo6WjfffLN/EaFwdrXn9QAAAAh/fMoLAbE2i+YVZiqnZ3vNX7O70YfyObm9NLJHG739xmsqKirSG2+8IZfL1eRrnbuDcerUqZoyZUpI3cHoqvXoP98s1eLNjZuFi8uderBou2bmpGpeYWbENNKeY7ValZGRoYyMDEnSiRMnVFJSoi+//FLl5eWNVhg+ceKENm/erM2bN8tisah79+7q3bu3+vTpo8TERFYqAgAAAIAAcrk9emxFaZM3xxaXOzV3yXbNGt5d8wr7NvjC7bPPPtOrr77qX73HYrFowoQJGjJkSMBqBwDgYkpKSlRUVKSlS5dq165dTY6JiorS0KFDVVBQoHvvvVdpaWmtWpPH49Gbr7+mkuIv/NvcvihtruumL70dpUOn9H/+8Zk/dwEAaA0Xfrd7/92/a9RAGxMbp3E33KApk2/RHXfcoTZt2gSp0pa1du1avffee/4/2+12TZkyRenp6UGsqmVc7Xk9AAAAjIFPeCEi1mbRxOwU5WUmqfJMrZyuOsXZTNqy7gMt/f0zmvnaazp16lSTPxsOdzC6PV6tKqlosoH2Qos27dewHoma2D9FNos5QNWFnsTERI0ePVqjR4+Wx+NRWVmZSktLtXfvXp08ebLBWI/Ho927d2v37t1auXKl2rVrp169eqlPnz7q0aOHbDZbcA4CAAAAACKAx1uv1aUVl3y6jCQt3LhPOT0TNTE7RRZzlLZs2aIVK1b499tsNt10000aMGBAa5cMAMBFffXVV/4VZz///PMmx5hMJg0aNEjjx4/XPffco759A9OseubMGS1dWqSDBw/4t52ut2ltXQ8drnc0GPvN3AUAoKWd+273tz+arfu/+5EsVqtGjBqjm2++Sd+eOVMdO7QPdoktxufz6d1339X69ev92+Lj4zVt2jT17NkziJW1jKs9rwcAAIBx0EQbQizmKJnk03tvLNdrr72md999V5WVlU2OjY+P1w033KBJkyaFxR2MdV6fnv2w7IrGPru2TAX9ksVNfGdZLBalp6f77+KsrKxUaWmpdu3apfLyctXV1TUYX1lZqY8//lgff/yxzGazf5Xa3r17q0OHDqxSCwAAAAAtyO2t1/wPrux8d/6a3crLTNLGjzbo3Xff9W+32+2aPHmy/+kkAAAE0r59+7Rs2TIVFRVp69atFx3Xv39/jR8/XnfffXfAb/o4evSolixZ0uB6+bH6WH1Q21On1PSiEudylyYXAEBrsZij9O277lRW3wxFR0crKytLZrOxFgny+Xx66623tGXLFv82h8OhGTNmqGvXrkGsrOVczXk9ny8AAACMhTbFELNo0SLdc889Te6LjY3V2LFjdfPNN+uuu+5Su3btAlzd1XNW16nkkPOKxhaXO1VVU6fYaP7zbEq7du00cuRIjRw5Ul6vV3v27PGvUnvixIkGY71er8rKylRWVqZVq1YpISHB31Dbs2dPRUdHB+koAAAAAMAYnNWeZpzvVmn16ve0bctH/m1xcXGaNm1aqz/+GgCACx06dEgvvfSSli5dqo8++uii4/r27auCggJ9+9vf1pAhQ4Jyg35ZWZmWLVum2tpa/7b9ngStresht6wX/bnicqec1R4euQwAaHVRUVGNFr0xgvr6er3++uvavn27f1tiYqJmzJihlJSU4BXWwpp3Xs/nCwAAACPi012I+eSTTxr8OTo6WqNHj1ZhYaHuvvtudejQIUiVXZtKV/NOHE+66tQpoekVBHCe2Wz2N8VKUlVVlX+V2oMHDzY6Ya+qqtLWrVu1detWRUVFKTU11f/zSUlJrFILAAAAAM1UVe2+wpE+5VgPaNuWI/4tDodDt956q7p169Y6xQEAcIGjR4/q5ZdfVlFRkdasWSOfz9fkuF69eqmgoEB33XWXRo8eHdRrhh9//LFWrFjRoNaSuiRt9nSRT5df6c9ZU6eUhJjWLBEAAEPyer1avny5SkpK/Ns6duyo2267LWy/r76YKz+vP4vPFwAAAMZDE22I+eEPf6hPPvlEtbW1uuWWW/Sd73xHXbp0CXZZ16xd7MVXBGhK22aOx1kJCQkaPny4hg8fLq/Xq3379qmkpER79+7V8ePHG4ytr6/X3r17tXfvXq1evVpt2rTxN9SmpaUpJoaTPwAAAAC4nAS77bJjTPJplHWv+ljOn5e1a9dOt912m6FW7wEAhJ7Kykq99tprKioq0rvvviuv19vkuNTUVI0fP1633367xo0bp6io4D6iuL6+XqtWrdKmTZv828xms4aMGKMX3jkl6coaex0xXGcGAKC56urqtGzZMn311Vf+bSkpKbr99tvVtm3b4BXWSq7kvP5CfL4AAAAwHppoQ0zXrl315JNPSpIGDhwos/nyd9OHA4fdqqzODhWXX/5RGFmdHZx8tACz2ay0tDT/I0GdTqd27NihnTt36uDBg3K7G95VeerUKW3btk3btm2TyWRSt27d1Lt3b/Xp00fJycmsUgsAAAAATXDYLZc8341SvXJte9TDXOnfZtTVewAAoWPLli0qKirS+vXrL/p46U6dOmn8+PGaMWOGJkyYIIslNL4uqK2t1fLly7Vr1y7/ttjYWBUWFqpnnwxlFX905deZ7aFxTAAAhIva2lotWbJE+/bt82/r1q2bZsyYoTZt2gSxstbzzfN6myVK+ZlJah9n0/Ezbq0uPSK3p14Sny8AAACMik94CAir2aT7x6TpwaLtlx07e0yarGYaNluaw+HQsGHDNGzYMNXX12v//v0qKSnRnj17dOzYsQZjfT6f9u/fr/379+u9995TfHx8g1Vq7XZ7kI4CANBcHm+93N56Oas9qqp2K8Fuk8Nukc0cJYs5uCsLAQBgBDZzlB7ITdPcJdsb7TPLq3G23epqPt/oY+TVewAAwefx1uvNt1bq3//935vc37FjR+Xn5+vWW2/VpEmTZLWG1mIGVVVVWrJkiSoqKvzb2rdvr6lTp6pLly7yeOsvmrvfNCe3l2yc9wIAcMWqq6u1aNEiff311/5tPXv21NRp02W2RetwVY0hrzGfO6///ds79Zup/TW4ezs5q+t00uVW21ibnpj+LW3dX6mfvvI5ny8AAAAMiiZaBITNYlZBv2TdNSxVizfvv+i4mTmpyu+XLJvFGCvwhqqoqCj16NFDPXr0kCSdOXNGpaWl2rlzpw4cOKDa2toG40+fPq3t27dr+/btMplM6tq1q7+ptlOnTqxSCwAhyuX2aHVphZ5ZU9ZglZ6szg49kJum/Mxkxdr4OAgAwLWwmKOUn5msWcNTtXDj+fNdqzzKt32lFPNp/7YuXbvqjttvV3x8fDBKBQAY3LlzwF8s+6jBdmtsGw0dNVb/NvN23XXHbYqOjg5ShZf29ddfa+nSpTp9+nx2du/eXdOmTZPD4ZB08dz9plnDuysvM8kQjT0AAATC6dOntWDBAh05csS/rU+fPpo4abLe333S0NeYLeYojc9M1ri+yXqnpEK3P/NRo2P9tzFpeuvBsbKYxOcLAAAAAwrvT7QIK2aTNO+mTA3rmajn1jY+0bp/TJry+yWLRWgDLy4uTkOGDNGQIUNUX1+vgwcP+lepvfBkWTq7Su2BAwd04MABvf/++4qLi1OvXr3Uu3dv9erVS7GxsUE6CgDAhVxujx5bUdrkl4rF5U7NXbJds4Z317zCvmF/kRMAgGCLtVk0rzBTOT3ba/6a3fqq/LjGR3+pDlEu/5juPXro9ttu48keAIBWceE5oC95iNqOvVvuY/tl7/4txfYdo69tMdqd0F1eU2guXlBSUqJXXnlFHo/Hv23AgAG66aabZLPZGoz9Zu5+8zrznNxeystM4lwXAIArVFVVpRdffFEnTpzwb+vXr5/GF96s37/zVURcY673SY+9WdrkYlDF5U79sGi7Zuakal5hZhCqAwAAQGsL70+zCBseb71WlVbo92/v1KNTslX0wAg5q+tU5apTQqxVjhirPt53QhP/50M9fGNfTcxO4S6+IImKilJqaqpSU1MlSS6XS6Wlpdq1a5f279+vmpqaBuPPnDmjzz77TJ999pkkqUuXLho7dqzS09MDXjsA4CyPt16rSysuuSqPJC3cuE85PRPJXQAAWkCszaKJ2Ska0T1OixcsUOWJ8w20fdLTNX3atJBd+Q8AEN6+eQ5oMluUMOK2RuNC8RzQ5/Np3bp1eu+99/zbTCaTRo8ereuvv15RUU3XeS538zKT5Kz2yFlTJ0eM1VCPlgYAIBBOnDihF198UVVVVf5t3/rWt3TjxEKt2nE0Iq4xuz1erSqpuOTTVCVp0ab9GtYjURP7p/BUVQAAAIOhiRYB4fbWa/4HZTpQWa3vvLBFlihpfFaK2sfZdPyMW6uKD8tTf3bs/DW7edRWCImNjdXgwYM1ePBg+Xw+ff311yopKVFZWZmOHDkin8/XYPzXX3+tZcuW6eGHH260SgQAIDDO5e6VIHcBAGg5FnOUtn+8RZUnjvu3ZWdna/LkybJYuAQDAGgd4XoO6PF49MYbb+jTTz/1b7PZbCooKNCQIUMu+/OWfzXLxtosSkmIac1SAQAwpCNHjmjBggU6ffq0f9vQoUN14403qsYTnp8vrkad16dnP7yyY312bZkK+iUrzBfeBQAAwDfw8Q4B4az2qOTQ+cdqeeqlFZ8fbnJscblTzmpP2D/2w4hMJpO6du2qrl27SpKqq6u1Y8cO7dy5UwcOHJDLdXalpejo6IuuEgEAaH3fzN1LIXcBAGhZCQkJ/n+/7rrrVFhYKLOZFWoAAK0nHM8BXS6XioqKtH//+RXfHA6HJk+erLS0tCBWBgBAZCgvL9fChQtVXV3t3zZixAgVFBTIZDLJWe0Ou88XV8tZXdesY62qqVNsdHgeKwAAAJrGpzsERFW1u1njnTV1rB4QBux2uwYNGqRBgwbJ5/Pp0KFDOnDggFJTU1llCQCCiNwFACB4hgwZooSEBNXX1ys9PZ0bDAEArS7czgGPHTumxYsXq7Ky0r8tJSVF06dPV4cOHYJWFwAAkWLfvn1avHix3O6znyFMJpPGjBmj66+/XiaTSVL4fb64FpWuumaNP+mqU6cEeytVAwAAgGCgyw0BkWC3NWu8I8baSpWgtZhMJnXu3FmdO3cOdikAEPHIXQAAgsdkMik9PT3YZQAAIkg4nQOWlZXppZdeUk1NjX9bnz59NGXKFMXGxgatLgAAIsVXX32loqIieTweSWfPYceNG6dRo0b5G2il8Pp8ca3axTav9rbNHA8AAIDQx3IoCAiH3aKszo4rGpvV2SGH3Vj93Xa7XfHx8cEuAwAQISI9dwEAAAAgkoTLOeDWrVu1aNGiBg20Q4cO1W233UYDLQAAAVBaWqolS5b4G2jNZrPGjx+v0aNHN2iglcLn80VLcNitzTvWMG4YBgAAQNNookVA2MxReiA37YrGzsntJZvZGP9perz1qvX6lNCpu7zxSTp62i2X2yOPtz7YpQEADCxScxcAAKClebz1crk9OlxVo52HnTpcVcN5PYCQE+rngPX19Vq1apXeeOMN1defff80m83Kz8/XxIkTZbFcXdON2+PVmVqPDp2sVkm5U4dOVutMrUduj7clywcAwBA+/fRTvfTSS/4stlqtKiws1PDhw5scH+qfL1qS1WzS/WOu7Fhnj0mT1Wy6/EAAAACElfC9JQxhxWKOUn5msmYNT9XCjfsvOm7W8O7Ky0ySJYxPtM5xuT1aXVqhZ9aUqbjc6d+e1dmhB3LTlJ+ZrFgb/wsCAFpeJOYuAABAS+O8HkC4COVzQLfbreXLl2vnzp3+bXa7XYWFhcrOzr7q1z1T69E7JRV6bm3j9+j7x6SpoF+y4qJ5jwYAQJK2bNmiFStW+P9ss9l08803q3///hf9mVD+fNHSbBazCvol665hqVq8+eLHOjMnVfn9kmWzmANYHQAAAAKBq0gIGJOkueP6aGC3tnph/d5GFzfvHdVDY/t0lBHu3XO5PXpsRWmTJ5XF5U7NXbJds4Z317zCvnzhBgBoFbE2i+YVZiqnZ3vNX7O7Ue7Oye2lvMwkcggAAKAJnNcDCDeheA7odDq1ZMkSHT582L8tMTFR06ZNU5cuXa76dV21Hv3nm6VNNrkUlzv1YNF2zcxJ1bzCTBppAQARb/369Vq9erX/z3a7XZMnT1ZGRsZlfzYUP1+0lrhoix65KVM5PRP1bBM36cwek6Z8btIBAAAwLD7lISA83nq9U1qhn71arJk5qXr27iGqcXtV6XKrXaxN0dYoLd60X4++UarfTMnWxOyUsL1j0eOt1+rSikvelSlJCzfuU07PxLA+VgBAaIu1WTQxO0V5mUlyVnvkrKmTI8Yqh90imzmK/AEAAGgC5/UAwtWF54CVZ2rldNWpXXy0HHZrwM8By8vLtWTJEp0+fdq/LTU1VdOmTVNCQsJVv67b49WqkopLrhInSYs27dewHoma2D+F1eIAABHJ5/Pp/fff19q1a/3b4uLiNG3aNKWlpV3x60TSNea4aIsm9k9RQb9kVVXX6WR1ndrGWuWIscpqNvGZAgAAwMBookVAuL31mv9Bmaqq6/SXD3Zr/prdykhpo/hoi07XerTz8CnV+86Onb9md1g/9uPcsV6JcD9WAEDos/zrQmaszaKUhJhglwMAABDyOK8HEM4s5iiZ5FPVoX0ym83qmNJbZnNgGz5KS0u1fPlyeTwe/7bs7GxNmjRJNpvtml67zuvTsx9e2Xv0s2vLVNAvWQZYHA8AgGbx+XxauXKlNm3a5N/mcDg0ffp0paamNvv1Iukas81iltnklet4ueKsViXFdwn4ZykAAAAEHpePEBDOao9KDp1/7EW9Tyo9dKrJscXlTjmrPWH76I9vHuulhPuxAgAAAABgNJzXAzCC6urqgP9On8+n9evX69133/VvM5lMGjVqlG644QZFRV37DQfO6rpmvUdX1dQplscuAwAiSH19vd544w1t27bNv61du3aaMWOGOnXqFMTKwsvJkyclSV26dAluIQAAAAgIlslAQFRVu5s13llT10qVtL5IOlYAAAAAAIyG83oAaD6v16vXXnutQQOtzWbTxIkTlZeX1yINtJJU6Wree+7JZo4HACCceb1eLV++vEEDbYcOHXTnnXfSQAsAAABcArdgIyAS7M17TJcjxtpKlbS+SDpWAAAAAACMhvN6AGgel8ulZcuWad++ff5tbdq00S233KLevXu36O9qF9u899y2zRwPAEC48ng8eumll7Rr1y7/tuTkZN1xxx1q27Zt8AoDAAAAwgAr0SIgHHaLsjo7/H82R5mU2amNhvZop8xObWSOMvn3ZXV2yGEP3/7ubx7rpYT7sQIAAAAAYDSc1wPAlTt+/Lief/75Bg20ycnJ+va3v93iDbSS5LBbm/cezY0OAIAI4Ha7tXjx4gYNtF26dNFdd91FAy0AAABwBbjKj4CwmaP0QG6afvZqsWYN7667clJV4/bqhMutxFiboq1RWrL5gBZu3Kc5ub1kM4dvf/e5Y527ZPtlx4b7sQIAAAAAznN7vKrz+uSsrlOlq07tYq1y2K2ymk2yWczBLg9XiPN6ALgye/bs0bJly1RTU+Pf1rt3b02ZMkVxcXGt8jutZpPuH5OmB4u2X3bs7DFpsppNlx0HAEA4q66u1uLFi3Xw4EH/th49emjGjBmKjY0NYmUAAABA+KCJFgFhMUepIDNZw3u215pdRzX7xY9VXO7078/q7NB3RvbQOz8cqzYxFlnC+AsoizlK+ZnJmjU8VQs37r/ouFnDuysvMymsjxUAAAAAcNaZWo/eKanQc2vLGp3v3j8mTQX9khUXzWWYcMB5PQBc3rZt2/TGG2+ovr7ev23IkCGaMGGCLJbWyzubxayCfsmalZOqhZsu8R6d0135/ZK5iQUAYGhnzpzRwoULdfjwYf+23r1769Zbb1V0dHQQKwMAAADCC9/eIGB8kp5678smv4AqLnfq//zjM80a3l3zCvsGvrgWFmuzaF5hpnJ6ttf8NbsbfYE6J7eX8jKTFGvjf0EAAAAACHeuWo/+881SLd7c9Pnug0XbNTMnVfMKM2mkDROc1wNA03w+n1avXq0NGzb4t5nNZuXm5mr06NEymVp/5dcokzQ3r48GprbVC+v3NnqPvndUD43t01EBKAUAgKBxOp1asGCBjh075t+WmZmpqVOnymq1BrEyAAAAIPxwpR8B4fHWa3VpxSVXcJGkhRv3KadnoiZmp4T9Si6xNosmZqcoLzNJlWdq5XTVqV18tBx2q2zmqLA/PgAAAACA5PZ4taqkoskG2gst2rRfw3okamL/FFbFCxMXntc7qz1y1tTJEWOVw27hvB5ARHK73XrllVe0Y8cO/za73a6JEyeqf//+ganB49XK4gr94rVizcxJ1bN3D1GN26tKl1vtYm2KtkZp8ab9evSNUv36lixyFwBgSJWVlXrxxRd18uRJ/7YBAwZo0qRJrboiPAAAAGBUfIpGQLi99Zr/QdkVjZ2/ZrdhHodoMUfJJJ+qDu2T2WxWx5TeMpu5aAsAAAAARlHn9enZD6/sfPfZtWUq6JcsFi8NH5Z/NcvG2ixKSYgJdjkAEDROp1NLly7VoUOH/NsSExM1ZcoUdevWLWB1nMvdquo6/eWD3Zq/ZrcyUtooPtqi07Ue7Tx8SvW+s2PJXQCAER09elQvvviiTp8+7d82ePBgTZw4ke8gAQAAgKvE5SMEhLPao5JDzssP1NlHXTqrPYZ6JGJ1dXWwSwAAAAAAtAJndV2zznerauoUG22c810AgPEdOnRIS5Ys0alTp/zbunXrpmnTpqlt27YBreWbuVvvk0oPnWpyLLkLADCaQ4cOaeHChXK5XP5tw4cPV0FBgaKiwn9xIgAAACBYuHqEgKiqdjdrvLOmjhVeAAAAAAAhr9JV16zxJ1116pRgb6VqAABoWTt27NDy5ctVV3c+77Kzs3XzzTcrOjo64PWQuwCASLV//34tXrxYtbW1/m1jxozRDTfcIJPJFMTKAAAAgPAXtrekzZ07VxkZGVq+fHmT+zds2KB7771XI0aM0KBBgzR9+nS99NJL8vl8Aa4UkpRgtzVrvCPG2kqVAAAAAADQctrFNu/8tW0zxwMAEAw+n08bNmxQUVGRv4HWZDJp1KhRmjp1alAaaCVyFwAQmcrKyrRw4UJ/A63JZNK4ceNooAUAAABaSFg20b700ktauXLlRfcvWbJE9957r7Zs2aJ+/fopJydHu3fv1k9/+lPNmzcvgJXiHIfdoqzOjisam9XZIYedRZIBAAAAAKHPYbc273yXm0YBACHO6/Xq9ddf1zvvvOPfZrVadeONNyo/Pz+oj4uO5Ny12+2Kj48PdhkAgADbsWOHFi9e7L+pxWw2q6CgQGPGjKGBFgAAAGghYddEu2fPHj322GOX3P/oo48qPj5ey5Yt0/PPP6/58+drxYoVSk1N1fLly/X2228HsGJIks0cpQdy065o7JzcXrKZw+4/TQAAAABABLKaTbp/zJWd784ekyarmS85AQChq7q6WgsXLtS2bdv829q0aaPbbrtNw4YNC2JlZ0Vi7nq89ar1+pTQqbu88Uk6etotl9sjj7c+2KUBAFrZ559/rmXLlsnr9UqSLBaLbrzxRo0YMSLIlQEAAADGEladim63Ww899JCioqLUr1+/Jsf87W9/k9fr1X333ddgTOfOnfXzn//cPwaBZTFHKT8zWbOGp15y3Kzh3ZWXmSQLTbQAAAAAgDBgs5hV0C9Zdw279PnuzJxU5fdLls1iDlBlAAA0z/Hjx/X8889r7969/m3JycmaNWuWevfuHbzCLhBpuetye7Tii0OaMf8jjfrdByr80wYNf/w9zZj/kVZ8cUgutyfYJQIAWsnWrVu1fPly+Xw+SZLNZtPNN9+sIUOGBLkyAAAAwHgswS6gOZ588kkVFxfriSee0MqVK1VSUtJozPvvvy9JGj9+fKN9I0eOVJs2bfT555+roqJCycnJrV4zzou1WTSvMFM5Pdtr/prdKi53+vdldXZoTm4v5WUmKdYWVv9ZAgAAAAAinNkkzbspU8N6Juq5tWWNznfvH5Om/H7Jigr/xfAAAAa1d+9eLVu2TNXV1f5tvXv31pQpUxQXFxfEyhq70twN90VoXW6PHltRqoUb9zfaV1zu1Nwl2zVreHfNK+zLNXUAMJgNGzbonXfe8f85JiZGt9xyizIzM4NYFQAAAGBcYXNlZcOGDXrhhRd00003afLkyVq5cmWjMceOHdPx48dltVqVltb4kU5ms1lpaWn69NNPtXPnTppogyDWZtHE7BTlZSbJWe2Rs6ZOjhirHHaLbOYoVqAFAAAAAIQVt8ert4sr9F+rdurRKdkqemCEnNV1qnLVKSHWKkeMVR/vO6GJ//OhfjQ+QxP7p4T9qngAAGPZvn27Xn/9ddXX1/u3DR48WDfeeKMsltD6CsHjrdeq0gr9/u3L5+7DN/bVxOyUsLzm7PHWa3VpRZMNtBdauHGfcnomhu1xAgAa8vl8WrNmjdasWePfFhcXpylTpoTMqvAAAACAEYXWFbCLOHHihB5++GGlpKTol7/85UXHHTlyRJLUoUMHRUU1fcEoKSmpwdiW4vP55PV6r/l1LnyNlni9UGSSFG02qWO8VR3jrRfsaZm/w1ATCXMaaZhT42FOr53ZHNhGEHIXF8OcGg9zajzM6bULx9w18rzXeX169sMyHais1nde2CJLlDQ+K0Xt42w6fsatVcWH5flXT9Kza8tU0C9ZZlP4/x0YeU4jGfNqPMzptTNy7vp8Pr3//vvasGGDf5vZbNaYMWM0atQomUymkPvvxu31af4HV5a789fsVl5mkkzyBbfoq3DuOK9EOB9nJOP92XiY02sXjpkrtdzc+3w+rV69Wps2bfJva9OmjaZOnarU1FT+uwog/n82HubUeJjTaxfo3AWAUBcWTbSPPPKIjh8/rr///e9yOBwXHedyuSSdfaTFxURHRzcY21Kqq6u1ffv2Fn3Nzz//vEVfD8HHnBoPc2o8zOnVGTx4cEB/H7mLK8GcGg9zajzM6dUJ99w10ry3bdtWse07q+TQ+cdIe+qlFZ8fbnJ8cblTVdV1ch0v18mTJwNUZesz0pziPObVeJjTq2PU3PV6vdq2bZsOHz6fWVarVdnZ2YqPj9enn37aYjW0FLvdroRO3ZuVu5VnalV1aJ+qq6sDVeY1a+o4LyVcjxPn8f5sPMzp1Qn3zJWufu59Pp8+//xz7d9/fgVyu92uAQMG6MSJEzpx4kRLlYhm4v9n42FOjYc5vTqBzl0ACHUh30S7aNEivffee7r//vuVk5NzybHnVp81mUyXfV2fj7uyAQAAAADA1bNarap0uZv1Myer6xRntV5+IAAAraSmpkZbtmxRVVWVf1tsbKwGDhyoxMTEIFZ2aWazWVXNzF2nqy7sVliKlOMEAJxVX1+v7du3q7y83L8tLi5OQ4YMUZs2bYJYGQAAABA5QrqJ9ssvv9QTTzyhrKws/eAHP7js+Li4OElnLwJeTG1traSzFwVbkt1uV0ZGxjW/jtfr9d8p079/fy58GQBzajzMqfEwp+GH3MXFMKfGw5waD3Mafloid40870dONa/JpW2sVUnxXdSlS5dWqigwjDynkYx5NR7mNPy0du4ePnxYRUVFOnXqlH9b165dNWXKFLVt2/aafm8gHD3dvNxtFx+tjim9W6ma1hMpxxnJeH82HuY0/ITCNWaPx6Ply5c3aKBNSkrSrbfeGtI3thgd/z8bD3NqPMwpAKClhXQT7R/+8AfV1NQoJiZGP/nJTxrsKy4uliQtW7ZMGzZs0NChQzVhwgRJ0rFjx+Tz+ZpckfbIkSOSzp6AtCSTydTiwWw2mwl7g2FOjYc5NR7mNDyQu7gSzKnxMKfGw5yGh5bOXaPNu8NuVVZnh4rLL//I5azODjlirIY6fsl4c4qzmFfjYU7DQ2vm7s6dO/Xyyy+rrq7Ovz8rK0uTJk1SdHR0i/3O1tTs3LWHZ+5GynHiLN6fjYc5DQ/Bvsbsdru1bNkylZWV+bd17txZt99+uxwOR4vWhavH/8/Gw5waD3MKAGgJId1E63K5JElbt27V1q1bmxyzbds2bdu2TRaLRbfffruSk5NVUVGhffv2qUePHg3Ger1e/4lIS9xZCOA8j7debm+9nNUeVVW7lWC3yWG3yGaOksUcFezyAAAAAKBVWM0m3T8mTQ8Wbb/s2Nlj0mQ1N77hFwCA1uTz+fTRRx/pnXfe8W8zmUwaMWKE8vLyFBUVPtfubOYoPZCbprlLtl927JzcXrKF6XXJSDlOAIhUNTU1Wrx4sQ4cOODf1r17d82YMcP/5FUAAAAAgRPSTbQLFiy46L7vfe97evfdd/X4449r2rRp/u25ublatmyZVq1apdmzZzf4mfXr1+vUqVPq27evUlJSWq1uINK43B6tLq3QM2vKGqyOkNXZoQdy05SfmaxYW0i/3QAAAADAVbFZzCrol6y7hqVq8eb9Fx03MydV+f2SZbOwMgYAIHC8Xq9WrFihTz75xL/NarUqLy9Pw4YNa/JpbqHMYo5SfmayZg1P1cKNF8/dWcO7Ky8zKWxv7o+U4wSASHTmzBktXLhQhw8f9m/r1auXpk+fLrvdHsTKAAAAgMhluK62mTNn6uWXX9YzzzyjYcOGaeDAgZKk8vJyPfroo5KkBx54IIgVAsbicnv02IrSJi/mFpc7NXfJds0a3l3zCvvSSAsAAADAkOKiLXrkpkzl9EzUs2sb31w4e0ya8vslKy6acyIAQOC43W4tWbJEe/fu9W+Lj4/XpEmTlJ6eHrzCrlGszaJ5hZnK6dle89fsbpS7c3J7KS8zKeyvRUbKcQJAJDl16pRefPFFHTt2zL+tb9++mjp1qmw2WxArAwAAACKb4a6u9O3bVw8++KD+67/+S3fddZeGDRummJgYbdq0SS6XSzNmzFBhYWGwywQMweOt1+rSikuuhiBJCzfuU07PRE3MTmFVBAAAAACGFBdt0cT+KSrol6yqmjqddNWpbaxVjhirrGYTK9ACAALqzJkz2rJli06fPu3flpSUpGnTpik5OTmIlbWMWJtFE7NTlJeZJGe1R86aOjlirHLYLbKZowxzDfLC46w8Uyunq07t4qPlsFsNdZwAEAkqKyu1YMECVVZW+rf1799ft9xyiywWw31lDwAAAIQVQ34inz17tnr16qW///3v+uyzz2QymdSrVy/deeedmjp1arDLAwzD7a3X/A/Krmjs/DW7ebQYAAAAAEOzWcyyWaTYaIs6JfAYTgBAcDidTq1bt051dXX+bb169dLUqVMVFxcXxMpaluVfTaSxNotSEmKCXU6rsZijZJJPVYf2yWw2q2NKb5nN3JwDAOHk2LFjevHFF3Xq1Cn/tuuuu06FhYW8pwMAAAAhIGybaP/yl79ccn9eXp7y8vICVA0QmZzVHpUccl5+oKTicqec1R4eLwYAAAAAAAC0oi+//LJBA+11112niRMnsspdmKuurg52CQCAq3D48GEtWLBALpfLvy0nJ0fjx49XVBQLzwAAAAChgKtmAK5aVbW7WeOdNXWGXhUCAAAAAAAACLbevXvLbrfL4/Fo1KhRGjt2rEwmU7DLAgAg4hw4cECLFy9WTU2Nf9vo0aM1btw4shkAAAAIITTRArhqCXZbs8Y7YqytVAkAAAAAAAAQmXw+nyT5m3ESEhI0btw41dfXa/DgwTTpAAAQBHv27NGSJUv8q8ObTCZdf/31GjNmDNkMAAAAhBieEQHgqjnsFmV1dlzR2KzODjns9O0DAAAAAAAALe2bzTgmk0lmszlI1QAAENl27dqlRYsW+Rtoo6KilJ+fz+rwAAAAQIiiiRbAVbOZo/RAbtoVjZ2T20s2M285AAAAAAAAQEuiGQcAgNDxxRdfqKioSF6vV5JksVg0YcIEjRw5MsiVAQAAALgYOtoAXDWLOUr5mcmaNTz1kuNmDe+uvMwkWWiiBQAAAAAAAK6Zz+cLdglB5/HWy+X26HBVjXYedupwVY1cbo883vpglwYAiFDbtm3Tyy+/rPr6s1lktVp10003adiwYUGuDAAAAMCl8Gx1ANck1mbRvMJM5fRsr/lrdqu43Onfl9XZoTm5vZSXmaRYG283AAAAAAAAwLWigVZyuT1aXVqhZ9aUNboe+UBumvIzk7keCQAIqLKyMpWUlPj/HB0drUmTJikrKyuIVQEAAAC4ElxFAnDNYm0WTcxOUV5mkpzVHjlr6uSIscpht8hmjmIFWgAAAAAAAKCFmEymYJcQVC63R4+tKNXCjfsb7Ssud2ruku2aNby75hX2pZEWANDqfD6fvvzyS+3cudO/LTY2VlOmTFGfPn2CWBkAAACAK8UVJAAtwvKvZtlYm0UpCTHBLgcAAAAAAACAwXi89VpdWtFkA+2FFm7cp5yeiZqYncIN/gCAVrVt27YGDbTx8fGaPn26evToEbyiAAAAADQLV48AAAAAAAAAAEDIc3vrNf+DsisaO3/Nbrm99a1cEQAg0u3evdv/7wkJCbrjjjtooAUAAADCDE20AAAAAAAAAAAg5DmrPSo55LyiscXlTjmrPa1cEQAg0uXk5Mhut6tdu3a6/fbb1aVLl2CXBAAAAKCZLMEuAAAAAAAAAAAA4HKqqt3NGu+sqVNKQkwrVQMAgJSamqq8vDxJUlJSUpCrAQAAAHA1WIkWAAAAAAAAAACEvAS7rVnjHTHWVqoEAAAAAAAARkETLQAAAAAAAAAACHkOu0VZnR1XNDars0MOu3Eexme32xUfHx/sMgAATWjbtq06duwY7DIAAAAAXCWaaAEAAAAAAAAAQMizmaP0QG7aFY2dk9tLNnP4fwXi8dar1utTQqfu8sYn6ehpt1xujzze+mCXBgARz+3xqsbjU2z7zjptSdCRU26dqfXI7fEGu7QW5fZ4dabWo0Mnq1VS7tShk9WGPE4AAABELuPchg0AAAAAAAAAAAzLYo5SfmayZg1P1cKN+y86btbw7srLTJIlzJtoXW6PVpdW6Jk1ZSoud/q3Z3V26IHcNOVnJivWxtc8ABAMZ2o9eqekQs+tbfweff+YNBX0S1ZcdPi/R0fKcQIAACCy8YkWAAAAAAAAAACEBZOkueP6aGC3tnph/d5GDT33juqhsX06yhS8EluEy+3RYytKm2wWLi53au6S7Zo1vLvmFfalkRYAAsxV69F/vlmqxZubfo9+sGi7Zuakal5hZlg3mEbKcQIAAAB8mgUAAAAAAAAAACHP463XO6UV+tmrxZqZk6pn7x6iGrdXlS632sXaFG2N0uJN+/XoG6X6zZRsTcxOCcvVaD3eeq0urbjkaruStHDjPuX0TAzb4wSAcOT2eLWqpKLJxtILLdq0X8N6JGpi/xTZLOYAVddyIuU4AQAAAIkmWgAAAAAAAAAAEAbc3nrN/6BMVdV1+ssHuzV/zW5lpLRRfLRFp2s92nn4lOp9Z8fOX7NbeZlJYdlceu44r0Q4HycAhKM6r0/Pfnhl79HPri1TQb9kheOC4ZFynAAAAIBEEy0AAAAAAAAAAAgDzmqPSg45/X+u90mlh041Oba43ClntUexYdjR883jvJRwPk4ACEfO6rpmvUdX1dQpNjr83qMj5TgBAAAASeLWZAAAAAAAAAAAEPKqqt3NGu+sqWulSlpXpBwnAISjSlfz3nNPNnN8qIiU4wQAAAAkmmgBAAAAAAAAAEAYSLDbmjXeEWNtpUpaV6QcJwCEo3axzXvPbdvM8aEiUo4TAAAAkGiiBQAAAAAAAAAAYcBhtyirs+OKxmZ1dshhD8/HSkfKcQJAOHLYrc17jw7TGx0i5TgBAAAAiSZaAAAAAAAAAAAQBmzmKD2Qm3ZFY+fk9pLNHJ5fgUTKcQJAOLKaTbp/zJW9R88ekyar2dTKFbWOSDlOAAAAQKKJFgAAAAAAAAAAhAGLOUr5mcmaNTz1kuNmDe+uvMwkWcK0uTRSjhMAwpHNYlZBv2TNyrnMe3ROd+X3S5bNYg5QZS3r3HHeNezSxzkzJzWsjxMAAACQJJ7xAwAAAAAAAAAAwkKszaJ5hZnK6dle89fsVnG5078vq7NDc3J7KS8zSbG28P76I1KOEwDCUZRJmpvXRwNT2+qF9XsbvUffO6qHxvbpqKgwX5w1LtqiR27KVE7PRD27tqzRcc4ek6b8fsmKiyaLAAAAEN74RAsAAAAAAAAAAMJGrM2iidkpystMkrPaI2dNnRwxVjnsFtnMUYZZmfXC46w8Uyunq07t4qPlsFsNdZwAEE483nq9U1qhn71arJk5qXr27iGqcXtV6XKrXaxN0dYoLd60X4++UarfTMnWxOyUsH6/jou2aGL/FBX0S1ZVTZ1OuurUNtYqR4xVVrOJFWgBAABgCDTRAgAAAAAAAACAsGL5VxNprM2ilISYYJfTaizmKJnkU9WhfTKbzeqY0ltmMw1LABAsbm+95n9QpqrqOv3lg92av2a3MlLaKD7aotO1Hu08fEr1vrNj56/ZrbzMpLBuopUkm8Usm0WKjbaoU4I92OUAAAAALY4mWgAAAAAAAAAAgBBWXV0d7BIAAJKc1R6VHHL6/1zvk0oPnWpybHG5U85qj2JtfCUPAAAAhLLwvu0NAAAAAAAAAAAAAIAAqKp2N2u8s6aulSoBAAAA0FJoogUAAAAAAAAAAAAA4DIS7LZmjXfEWFupEgAAAAAthSZaAAAAAAAAAAAAAAAuw2G3KKuz44rGZnV2yGG3tHJFAAAAAK4VTbQAAAAAAAAtwOOtl8vt0eGqGu087NThqhq53B55vPXBLg0AAAAA0AJs5ig9kJt2RWPn5PaSzczX8QAAAECo49Y3AAAAAACAa+Rye7S6tELPrClTcbnTvz2rs0MP5KYpPzNZsTYuwwAAAABAOLOYo5SfmaxZw1O1cOP+i46bNby78jKTZKGJFgAAAAh5fHsDAAAAAABwDVxujx5bUdrkF6jF5U7NXbJds4Z317zCvjTSAgAAAECYi7VZNK8wUzk922v+mt2NbqSck9tLeZlJnP8BAAAAYYJP7gAAAAAAAFfJ463X6tKKS65AJEkLN+5TTs9ETcxOYSUiAAAAAAhzsTaLJmanKC8zSZVnauV01aldfLQcdqts5ijO+wAAAIAwwqd3AAAAAACAq+T21mv+B2VXNHb+mt1ye+tbuSIAAAAAQCBYzFGKNptUdWifok5XqGO8TbE2Cw20AAAAQJhhJVoAAAAAAICr5Kz2qOSQ8/IDJRWXO+Ws9vBITwAAAAAwkOrq6mCXAAAAAOAacBscAAAAAADAVaqqdjdrvLOmrpUqAQAAAAAAAAAAQHPRRAsAAAAAAHCVEuy2Zo13xFhbqRIAAAAAAAAAAAA0F020AAAAAAAAV8lhtyirs+OKxmZ1dshht7RyRYFjt9sVHx8f7DIAAAAAAAAAAACuGk20AAAAAAAAV8lmjtIDuWlXNHZObi/ZzOF/KcbjrVet16eETt3ljU/S0dNuudweebz1wS4NABBBPN56udweHa6q0c7DTh2uqiGPAABoBWQuAAAAjM44y58AAAAAAAAEmMUcpfzMZM0anqqFG/dfdNys4d2Vl5kkS5g30brcHq0urdAza8pUXO70b8/q7NADuWnKz0xWrI3LTQCA1kUeAQAQGGQuAAAAIgGfaAEAAAAAAK5BrM2ieYWZyunZXvPX7G70xeKc3F7Ky0wK+y8WXW6PHltR2mSzcHG5U3OXbNes4d01r7Bv2B8rACB0kUcAAAQGmQsAAIBIwadZAAAAAACAaxRrs2hidoryMpPkrPbIWVMnR4xVDrtFNnNU2K9A6/HWa3VpxSVX25WkhRv3KadnoiZmp4T9MQMAQg95BABAYJC5AAAAiCR8kgUAAAAAAGgBFnOUYm0WpSTEKD25jVISYhRrsxjii0S3t17zPyi7orHz1+yW21vfyhUBACIReQQAQGCQuQAAAIgk4f8tDgAAAAAAAFqVs9qjkkPOKxpbXO6Us9rTyhUBACIReQQAQGCQuQAAAIgkNNECAAAAAADgkqqq3c0a76ypa6VKAACRjDwCACAwyFwAAABEEppoAQAAAAAAcEkJdluzxjtirK1UCQAgkpFHAAAEBpkLAACASEITLQAAAAAAAC7JYbcoq7PjisZmdXbIYbe0ckUAgEhEHgEAEBhkLgAAACIJTbQAAAAAAAC4JJs5Sg/kpl3R2Dm5vWQzc8kJANDyyCMAAAKDzAUAAEAk4dMsAAAAAAAALslijlJ+ZrJmDU+95LhZw7srLzNJFr5ABQC0AvIIAIDAIHMBAAAQSXiuAgAAAAAAAC4r1mbRvMJM5fRsr/lrdqu43Onfl9XZoTm5vZSXmaRYG5ebAACthzwCACAwyFwAAABECj7RAgAAAAAA4IrE2iyamJ2ivMwkVZ6pldNVp3bx0XLYrbKZo1h9CAAQEBfmkbPaI2dNnRwxVjnsFvIIAIAWROYCAAAgEtBECwAAAAAAgCtmMUfJJJ+qDu2T2WxWx5TeMpvNwS4LABBhLP9q3Im1WZSSEBPscgAAMCwyFwAAAEZHEy0AAAAAAACarbq6OtglAAAAAAAAAAAAXBOerwAAAAAAAAAAAAAAAAAAAICIQxMtAAAAAAAAAAAAAAAAAAAAIg5NtAAAAAAAAAAAAAAAAAAAAIg4NNECAAAAAAAAAAAAAAAAAAAg4tBECwAAAAAAAAAAAAAAAAAAgIhDEy0AAAAAAAAAAAAAAAAAAAAiDk20AAAAAAAAAAAAAAAAAAAAiDg00QIAAAAAAAAAAAAAAAAAACDi0EQLAAAAAAAAAAAAAAAAAACAiEMTLQAAAAAAAAAAAAAAAAAAACIOTbQAAAAAAAAAAAAAAAAAAACIODTRAgAAAAAAAAAAAAAAAAAAIOLQRAsAAAAAAAAAAAAAAAAAAICIQxMtAAAAAAAAAAAAAAAAAAAAIg5NtAAAAAAAAAAAAAAAAAAAAIg4NNECAAAAAAAAAAAAAAAAAAAg4tBECwAAAAAAAAAAAAAAAAAAgIhDEy0AAAAAAAAAAAAAAAAAAAAiDk20AAAAAAAAAAAAAAAAAAAAiDiWYBdwpd566y0tWrRIxcXF8vl86tatmwoLC3XvvfcqJiam0fgNGzboueee044dO1RTU6O0tDTdcccduvXWW2UymYJwBAAAAAAAAAAAAAAAAAAAAAgVYbES7Z/+9Cc9+OCD+uSTT5Sdna0RI0boxIkT+p//+R/deuutqqqqajB+yZIluvfee7Vlyxb169dPOTk52r17t376059q3rx5QToKAAAAAAAAAAAAAAAAAAAAhIqQX4n2448/1tNPPy2Hw6EFCxaob9++kiSXy6W5c+dq7dq1+p//+R/94he/kCTt2bNHjz76qOLj47VgwQL169dPklReXq577rlHy5cvV25urm688cagHRMAAAAAAAAAAAAAAAAAAACCK+RXon3llVckSffff7+/gVaSYmNjNXfuXEnSBx984N/+t7/9TV6vV/fdd5+/gVaSOnfurJ///Of+MQAAAAAAAAAAAAAAAAAAAIhcIb8S7a9+9St997vfVceOHRvt83q9kiSz2ezf9v7770uSxo8f32j8yJEj1aZNG33++eeqqKhQcnJyK1UNAAAAAAAAAAAAAAAAAACAUBbyK9FaLBb16tVLDoejwfZDhw7pd7/7nSRp2rRpkqRjx47p+PHjslqtSktLa/RaZrPZv33nzp2tXDkAAAAAAAAAAAAAAAAAAABCVcivRPtNv/3tb/Xpp5/q008/lclk0ne/+13NmTNHknTkyBFJUocOHRQV1XR/cFJSUoOxLcXn8/lXxr0WF75GS7wego85NR7m1HiY02t34arwgUDu4mKYU+NhTo2HOb124Zi7zLvxMKfGxLwaD3N67chdhALm1HiYU+NhTq9dOGauxNwbEXNqPMyp8TCn1y7QuQsAoc7k8/l8wS6iOYYOHSqn0ylJstlsmjBhgh5++GElJSXp448/1syZM9WzZ0+9/fbbTf78Qw89pDfeeEOPPPKI7r777muup7S0VC6X65pfBwCAcDZ48OCA/B5yFwAAchcAgEAidwEACAwyFwCAwAlU7gJAuGh6udYQ9tprr+nTTz/VSy+9pOuuu06vv/667rzzTrlcLv/qsyaT6bKvE2a9wwAAAAAAAAAAAAAAAAAAAGhBlmAX0FydOnWSJA0YMEDPPfecpk+frl27dmnZsmUaMWKEJKmmpuaiP19bWytJio2NbdG67Ha7MjIyrvl1vF6vPv/8c0lS//79WULdAJhT42FOjYc5DT/kLi6GOTUe5tR4mNPw0xK5y7wbD3NqTMyr8TCn4YfcRVOYU+NhTo2HOQ0/XGPGxTCnxsOcGg9zCgBoaWHXRHshm82miRMnateuXSopKdGUKVMkSceOHZPP52tyRdojR45IkpKSklq0FpPJ1OLBbDabCXuDYU6Nhzk1HuY0PJC7uBLMqfEwp8bDnIaHls5d5t14mFNjYl6NhzkND+QuLoc5NR7m1HiY0/DANWZcCebUeJhT42FOAQAtISrYBVzOU089pQcffFCHDx9ucr/NZpMkeTwetW3bVsnJyXK73dq3b1+jsV6vV2VlZZLUIncWAgAAAAAAAAAAAAAAAAAAIDyFfBPt+vXr9dZbb+nNN99scv+aNWsknV2iXZJyc3MlSatWrWrytU6dOqW+ffsqJSWllSoGAAAAAAAAAAAAAAAAAABAqAv5JtqZM2dKkp5++ml99tln/u11dXX6wx/+oM2bN6t9+/aaPn26f7zZbNYzzzyj7du3+8eXl5fr0UcflSQ98MADgTsAAAAAAAAAAAAAAAAAAAAAhBxLsAu4nFtuuUUff/yxioqKdPvtt2vQoEFyOBwqLS3V4cOH1bZtW/31r3+Vw+GQJPXt21cPPvig/uu//kt33XWXhg0bppiYGG3atEkul0szZsxQYWFhkI8KAAAAAAAAAAAAAAAAAAAAwRTyTbSS9Otf/1rDhw/XkiVLVFxcLLfbrc6dO+uee+7Rfffdp+Tk5AbjZ8+erV69eunvf/+7PvvsM5lMJvXq1Ut33nmnpk6dGqSjAAAAAAAAAAAAAAAAAAAAQKgw+Xw+X7CLCGfbt2+X1+uVyWSS3W6/5tfz+Xyqrq6WJNntdplMpmt+TQQXc2o8zKnxMKctIyYmRj179mzV30Hu4nKYU+NhTo2HOW0Z4Za7zLvxMKfGxLwaD3PaMshdBBtzajzMqfEwpy0j3DJXYu6NiDk1HubUeJjTlhGI3AWAcBEWK9GGsvr6eklnQ9rlcrXoa58LfRgHc2o8zKnxMKehjdxFczCnxsOcGg9zGtpaK3eZd+NhTo2JeTUe5jS0kbu4Usyp8TCnxsOchjauMaM5mFPjYU6NhzkFALQEmmivkdVqVV1dnaKiohQdHR3scgAACJqYmJhW/x3kLgAAZ5G7AAAEDrkLAEBgkLkAAAROIHIXAMKFyefz+YJdBAAAAAAAAAAAAAAAAAAAABBIUcEuAAAAAAAAAAAAAAAAAAAAAAg0mmgBAAAAAAAAAAAAAAAAAAAQcWiiBQAAAAAAAAAAAAAAAAAAQMShiRYAAAAAAAAAAAAAAAAAAAARhyZaAAAAAAAAAAAAAAAAAAAARByaaAEAAAAAAAAAAAAAAAAAABBxaKIFAAAAAAAAAAAAAAAAAABAxKGJFgAAAAAAAAAAAAAAAAAAABGHJloAAAAAAAAAAAAAAAAAAABEHJpoAQAAAAAAAAAAAAAAAAAAEHFoogUAAAAAAAAAAAAAAAAAAEDEoYkWAAAAAAAAAAAAAAAAAAAAEYcmWgAAAAAAAAAAAAAAAAAAAEQcmmgBAAAAAAAAAAAAAAAAAAAQcWiiDSF79uzRj370I91www0aMGCAxo8fryeffFIulyvYpeEq/fOf/9S3v/1tDR06VNnZ2crNzdWPf/xj7d69O9iloYXMnTtXGRkZWr58ebBLwTU4ceKEfve732nChAnq37+/hg4dqvvuu08fffRRsEtDKyFzjYncNT5yN/yRuZGJ3DUmctfYyFxjIHcjE7lrPGSu8ZG7xkDuRh4y15jIXeMjd42B3AUAtDSaaEPEZ599pmnTpun1119Xhw4ddP3118vlcmn+/Pm64447dPr06WCXiGbw+Xx66KGH9PDDD+uTTz5Rr169NHbsWJnNZr366quaNm2a1q1bF+wycY1eeuklrVy5Mthl4BqVlZVp8uTJ+n//7/+prq5Oubm56tKli9atW6d7771Xq1atCnaJaGFkrvGQu5GB3A1/ZG5kIneNh9w1PjLXGMjdyETuGguZGxnIXWMgdyMPmWs85G5kIHeNgdwFALQKH4Kurq7Ol5eX50tPT/e99NJL/u3V1dW+OXPm+NLT032/+tWvglghmuvVV1/1paen+0aNGuUrLS31b/d4PL7//u//9qWnp/tGjBjhO336dBCrxLUoKyvzDRw40Jeenu5LT0/3vfzyy8EuCVehrq7ON3nyZF96errvN7/5jc/j8fj3vfLKK7709HTfoEGDfDU1NUGsEi2JzDUmctf4yN3wR+ZGJnLXmMhdYyNzjYHcjUzkrvGQucZH7hoDuRt5yFxjIneNj9w1BnIXANBaWIk2BLz55ps6cOCARowYoVtvvdW/PSYmRo899phiY2O1bNkyVVVVBbFKNMc//vEPSdJDDz2kvn37+rebzWY9+OCD6tOnj44fP67169cHq0RcA7fbrYceekhRUVHq169fsMvBNXjnnXdUWlqqwYMHa968eTKbzf59U6ZM0dixY5WYmKjS0tIgVomWROYaE7lrbOSuMZC5kYncNSZy17jIXOMgdyMTuWs8ZK6xkbvGQe5GHjLXmMhdYyN3jYPcBQC0FppoQ8B7770nSSooKGi0r127dsrJyVFdXZ3Wrl0b6NJwlRwOh3r16qUhQ4Y02mcymdSzZ09JUkVFRaBLQwt48sknVVxcrJ///Ofq1KlTsMvBNXjrrbckSffdd59MJlOj/c8995xWr16tgQMHBrgytBYy15jIXWMjd42BzI1M5K4xkbvGReYaB7kbmchd4yFzjY3cNQ5yN/KQucZE7hobuWsc5C4AoLVYgl0ApF27dkmSMjIymtzfu3dvvf/++9qxY4duvvnmQJaGq/TnP//5ovu8Xq+Ki4sliQ/pYWjDhg164YUXdNNNN2ny5MlauXJlsEvCNfjiiy8kSYMGDdLJkye1YsUK7dixQxaLRUOGDNGECRMa3MGI8EfmGhO5a1zkrnGQuZGJ3DUmcteYyFxjIXcjE7lrPGSucZG7xkLuRh4y15jIXeMid42F3AUAtBaaaEPAkSNHJEnJyclN7k9KSmowDuFt8eLF+vrrr9W2bVuNGDEi2OWgGU6cOKGHH35YKSkp+uUvfxnscnCN3G63vv76a1ksFu3cuVM//OEPVVlZ6d+/aNEi9evXT/Pnz7/o+zPCD5kbecjd8EXuGgeZG7nI3chD7oYnMtdYyN3IRe5GFjI3fJG7xkLuRiYyN/KQu+GL3DUWchcA0Jqigl0AJJfLJUmKiYlpcv+57efGIXx99NFHeuKJJyRJP/rRjxQXFxfkitAcjzzyiI4fP67f/e53cjgcwS4H1+j06dOSJJ/Pp+9973tKT0/Xyy+/rE8++URLly5V//79VVJSon//93+X1+sNcrVoKWRuZCF3wxu5axxkbuQidyMLuRu+yFxjIXcjF7kbOcjc8EbuGgu5G5nI3MhC7oY3ctdYyF0AQGuiiTYEnFtO3mQyXXKcz+cLRDloJe+//77mzJkjt9utO++8UzNmzAh2SWiGRYsW6b333tN9992nnJycYJeDFuB2uyWdfQxP165d9fzzzys7O1txcXEaNGiQXnjhBXXs2FHFxcVatWpVkKtFSyFzIwe5G97IXWMhcyMXuRs5yN3wReYaD7kbucjdyEDmhjdy13jI3chE5kYOcje8kbvGQ+4CAFoTTbQh4Nwda9XV1U3ur6mpkSTZ7faA1YSWtWDBAn3/+99XTU2NZs6cqV/84hfBLgnN8OWXX+qJJ55QVlaWfvCDHwS7HLSQC+8Sv/POO2W1Whvsb9OmjSZNmiTp7J3GMAYyNzKQu+GN3DUeMjdykbuRgdwNX2SuMZG7kYvcNT4yN7yRu8ZE7kYmMjcykLvhjdw1JnIXANCaLMEuAFJSUpJOnjypo0ePqlu3bo32HzlyxD8O4cXj8ejXv/61ioqKZDKZ9MMf/lBz5swJdllopj/84Q+qqalRTEyMfvKTnzTYV1xcLElatmyZNmzYoKFDh+r2228PRplopjZt2shms8ntdqtr165Njjm3vbKyMpCloRWRucZG7hoDuWs8ZG7kIneNjdwNf2SuMZG7kYvcNS4y1xjIXWMidyMTmWts5K4xkLvGRO4CAFoTTbQhICMjQ7t27dJXX32l6667rtH+r776yj8O4aOmpkbf//73tW7dOtntdv32t7/VjTfeGOyycBVcLpckaevWrdq6dWuTY7Zt26Zt27bJYrFwohUmzGaz+vTpo+LiYlVUVDQ55tixY5KkxMTEQJaGVkTmGhe5axzkrvGQuZGL3DUuctcYyFxjIncjF7lrTGSucZC7xkTuRiYy17jIXeMgd42J3AUAtKaoYBcAKTc3V5K0cuXKRvsqKyu1adMmWa1WjRo1KtCl4Sp5vV7/SVb79u314osvcpIVxhYsWKCdO3c2+U9eXp4k6fHHH9fOnTv129/+NsjVojmuv/56SdJrr73WaJ/P59OHH34oScrJyQlkWWhFZK4xkbvGQu4aE5kbmchdYyJ3jYPMNS5yNzKRu8ZD5hoLuWtc5G7kIXONidw1FnLXuMhdAEBroYk2BBQUFKhz585at26dFi1a5N9eU1OjRx55RC6XS7feeqs6dOgQxCrRHH/961+1bt06xcbG6n//9381YMCAYJcEoAl33HGHHA6HNm/erKefflo+n0/S2ZOsp556Sl988YW6deum/Pz8IFeKlkLmGhO5C4Q+MjcykbvGRO4CoY/cjUzkrvGQuUB4IHcjD5lrTOQuEB7IXQBAazH5zqUKgmrTpk2aPXu2ampqlJWVpa5du2rbtm06cuSI+vXrpwULFig+Pj7YZeIKVFVV6frrr5fL5VKPHj3Uv3//i46dNGmS/45VhKfvfe97evfdd/X4449r2rRpwS4HV+HDDz/Uf/zHf6impkapqan+RzHt27dPCQkJ+tvf/sbFEoMhc42F3I0s5G54I3MjE7lrLORu5CBzwx+5G5nIXeMgcyMLuRv+yN3IQ+YaC7kbWcjd8EfuAgBagyXYBeCsnJwcvfTSS3r66ae1efNmffXVV+ratatuvfVW3XfffZxohZHNmzfL5XJJkvbu3au9e/dedGxmZiYnWkCQjR07Vq+99prmz5+vDRs26IMPPlCHDh00Y8YMPfDAA+rWrVuwS0QLI3ONhdwFwgeZG5nIXWMhd4HwQe5GJnLXOMhcILyQu5GHzDUWchcIL+QuAKA1sBItAAAAAAAAAAAAAAAAAAAAIk5UsAsAAAAAAAAAAAAAAAAAAAAAAo0mWgAAAAAAAAAAAAAAAAAAAEQcmmgBAAAAAAAAAAAAAAAAAAAQcWiiBQAAAAAAAAAAAAAAAAAAQMShiRYAAAAAAAAAAAAAAAAAAAARhyZaAAAAAAAAAAAAAAAAAAAARByaaAEAAAAAAAAAAAAAAAAAABBxaKIFAAAAAAAAAAAAAAAAAABAxKGJFgAAAAAAAAAAAAAAAAAAABGHJlogQixfvlwZGRkaO3ZssEvBBf70pz8pIyNDd955Z7BLAQC0IHI3NJG7AGA8ZG5oInMBwJjI3dBE7gKAMZG7oYncBQDAmGiiBQAAAAAAAAAAAAAAAAAAQMShiRYAAAAAAAAAAAAAAAAAAAARhyZaAAAAAAAAAAAAAAAAAAAARByaaAEAAAAAAAAAAAAAAAAAABBxaKIFIpDL5dLTTz+twsJCDRgwQDk5Obrvvvu0fv36JsdXVFTod7/7nQoLC/Wtb31LgwYN0uTJk/X000/L6XQ2Gv+nP/1JGRkZevLJJ3X06FH94he/0NixY9W/f3/l5+frySeflNvtliRt2rRJ9913n4YOHaoBAwZo6tSpevXVVy9a+44dO/TjH/9Y119/vbKzs/21r1y5ssG4vXv3KiMjQxkZGaqoqGj0Oj/96U+VkZGhESNGyOfzNdo/depUZWRkNHrdjz76SP/xH/+h0aNHKzs7W8OHD9e//du/adWqVU3WO27cOGVkZGjHjh36zW9+o6FDh2rQoEGaNm2aTp48edHjlKTf//73ysjIUHZ2tt59991LjgUAhC5yl9wFAAQGmUvmAgACh9wldwEAgUPukrsAAKB1WYJdAIDAqqmp0e23365du3apU6dO6tmzp/bu3at169Zp/fr1evzxxzV16lT/+HMnFqdOnZLValXv3r3l8Xi0a9cu7dixQ//4xz/0zDPPKCMjo9Hv2rdvnyZPnqzKykr17t1bZrNZBw4c0Pz583XgwAENHTpUv/rVr2S329WjRw8dPHhQJSUl+vGPf6yamhrdcccdDV5v0aJF+s///E95vV7FxsaqT58+OnnypNatW6d169bp5ptv1hNPPCGz2awePXooLS1NZWVlWrdunaZPn97gtTZs2CBJOnHihHbu3Km+ffv691VUVKi0tFQ2m02jR4/2b3/00Ue1cOFCSVLbtm3Vt29fVVRUaO3atVq7dq0mTpyo3//+97JarY3+Ln71q1/pk08+Ue/evVVdXS2bzaa2bdtedJ6efPJJ/e1vf1N0dLT+9Kc/KTc39xKzCgAIVeTuWeQuAKC1kblnkbkAgEAgd88idwEAgUDunkXuAgCAVuUDEBFefvllX3p6ui89Pd03bNgw3wcffODfd/z4cd/tt9/uS09P940cOdJXX1/v8/l8voMHD/oGDhzoS09P982ZM8d39OhR/8/s37/f/zPXX3+9z+l0+vc99dRT/t81ceJE3549e/z7/vjHP/r39e3b1/f444/7amtrfT6fz+dyuXz33XefLz093XfDDTc0qH/NmjW+jIwMX1ZWlu9///d/fR6Px79vw4YNvhEjRvjS09N9Tz75pH/7E0884UtPT/f98Ic/bPBaZWVl/hrS09N9L7zwQoP9RUVFvvT0dN/s2bP9255//nlfenq6r1+/fr6FCxf6vF6vf9+KFSv8f0+PPvpog9e64YYb/L/nzTffbPB3fuHf1R133NHo72jAgAG+devW+QAA4YfcPY/cBQC0JjL3PDIXANDayN3zyF0AQGsjd88jdwEAQGuLCnYTL4DA++lPf9rg7rfExEQ9/PDDkqRjx45p7969kqRnnnlGLpdL6enp+uMf/6gOHTr4f6Zbt2565pln1LFjR5WXl2vBggVN/q7HH39cPXr08P/5/vvvl9lsliQNHjxY//f//l/ZbDZJkt1u1+zZsyVJX3/9taqqqvw/99///d/y+Xz60Y9+pLvvvtv/GpI0YsQIPf7445KkF154QZWVlZLOPm5DktavX6/6+nr/+HN3Kg4dOlTS2ceOXOj999+XJOXn50uSamtr9de//lWSNHfuXM2cOVNRUeffPidOnKjf/OY3kqTFixfr4MGDjf4ehgwZosLCQv+fExMTm/z7+stf/qI///nPio2N1bPPPqtRo0Y1OQ4AED7IXXIXABAYZC6ZCwAIHHKX3AUABA65S+4CAIDWRRMtEGGioqL8JxAXuvCRHSdOnJAkffDBB5KkO++8038ydKGEhAT/ozRWr17daH/btm31rW99q8E2u93uP8kYO3Zso59JSkry//vp06clSQcPHlRpaakk6ZZbbmnyuHJzc9WuXTvV1NToo48+kiQNGjRIiYmJOnnypIqLi/1j169fL0n63ve+J5PJpC1btsjr9UqS3G63Nm7cqKioKN1www2SpI8//lhOp1MWi0UzZ85s8vcXFhYqOTlZXq/X//d2ocGDBzf5cxd69tln9cc//lE2m03PPfeccnJyLvszAIDQRu6SuwCAwCBzyVwAQOCQu+QuACBwyF1yFwAAtD5LsAsAEFgOh0N2u73R9ri4OP+/19bW6vTp06qoqJAkZWdnX/T1srKyJEl79uxptK9Tp05N/sy5k7am7tizWM6/Lfl8PknSl19+6d/2/e9//6K11NbWSpLKysoknT2pvP7667V8+XKtX79e/fv3l8fj0aZNm9S2bVsNHz5cvXv31pdffqni4mINGDBAGzdulMvl0qBBg/x3Z557ve7duys+Pr7J320ymdSvXz9VVFQ0+XfRsWPHi9YtSSUlJfrkk08knT3ZO3eSCQAIb+QuuQsACAwyl8wFAAQOuUvuAgACh9wldwEAQOtjJVogwkRHR1/RuDNnzvj//WInFxfuc7lc/hOjc5o6obvQhY/NuJRTp075//2TTz656D8ul6vR+Ly8PEnSunXrJEmffvqpTp8+rZycHEVFRWn48OGSpI0bN0o6f4fmhXd0njvpadOmzSXrPPd3ceHf3TkxMTGX/Nmamhq1adNGY8aMkST97Gc/k9PpvOTPAABCH7lL7gIAAoPMJXMBAIFD7pK7AIDAIXfJXQAA0PpYiRZAky68e/FSd85VVVVJkmJjY2UymVqlltjYWElnHyGyadOmZv3sqFGjFB0dre3bt+v06dPasGGDJPlPsEaOHKkFCxZo06ZNmj17ttasWSPp/AmadP7v4sITuKacOzG68O/uSjkcDr3wwgvq3r27CgsLdeTIET322GP67W9/2+zXAgCEH3KX3AUABAaZS+YCAAKH3CV3AQCBQ+6SuwAA4OqxEi2AJsXHxyspKUmS9MUXX1x03Ll9PXr0aLVaevbsKUk6efKkjh49etFxH3/8sXbv3q2amhr/NrvdrhEjRqiurk6bNm3yn6iNHDlSkjRs2DBZLBZ98sknKikp0cGDB9WrVy//75SktLQ0SdK+ffsuetJZX1+vkpISSWcfDdJcvXv3VnZ2ttq0aaNf/OIXkqRXXnnFf/ckAMDYyF1yFwAQGGQumQsACBxyl9wFAAQOuUvuAgCAq0cTLYCLuuGGGyRJS5YskdvtbrS/qqpKr776qiRp7NixrVZHr169/CcvCxcubHLM1q1bNXPmTBUWFmr79u0N9o0bN06S9N577+nTTz9Vp06d/CeG8fHx6t+/v1wul/74xz9Kavi4D0kaPHiwEhIS5PF4tGjRoiZ//5tvvqmjR4/KZDL5H9txtfLz83XjjTdK4tEfABBJyN2zyF0AQGsjc88icwEAgUDunkXuAgACgdw9i9wFAADNRRMtgIu6//77FRcXp127dukHP/iBjh8/7t934MABPfDAAzp27JiSk5N1zz33tGotP/jBDyRJzz77rJ577rkGJ34ff/yxf//AgQP9j/M454YbbpDJZNI///lPud1ujRgxosH+c38+d2fghY/7kM7e8Th79mxJ0lNPPaVFixapvr7ev3/lypX6+c9/Lkm67bbbGtzpeLV+9rOfqW3btv5HfwAAjI/cPYvcBQC0NjL3LDIXABAI5O5Z5C4AIBDI3bPIXQAA0Fw00QK4qG7duumpp55SfHy83nvvPeXm5mrKlCmaNGmSxo8fr23btqlz587661//qsTExFat5aabbtLcuXPl8/n0hz/8QSNHjtStt96qcePGaebMmTp69Kh69uypv/zlL41+NikpSdnZ2aqrq5OkRidi5x7/cW7sgAEDGr3GfffdpzvvvFMej0e//vWvNXLkSM2YMUNjxozR3Llz5XK5NGHCBD3yyCMtcrwdOnTQj3/8Y0k8+gMAIgW5ex65CwBoTWTueWQuAKC1kbvnkbsAgNZG7p5H7gIAgOagiRbAJY0ePVpvvvmmvvOd76hr167as2ePDh06pMzMTD300EP65z//qaysrIDU8v3vf19FRUWaNGmS4uPjtWPHDlVWVqpfv376wQ9+oJdfflnt27dv8mcvvAPxmydaAwcOVGxsrKSzjwcxmUyNft5kMumXv/ylnn/+eeXn58tsNqu0tFTS2bsh//znP+upp55SdHR0Sx2upk2bplGjRkni0R8AECnI3bPIXQBAayNzzyJzAQCBQO6eRe4CAAKB3D2L3AUAAM1h8vl8vmAXAQAAAAAAAAAAAAAAAAAAAAQSK9ECAAAAAAAAAAAAAAAAAAAg4tBECwAAAAAAAAAAAAAAAAAAgIhDEy0AAAAAAAAAAAAAAAAAAAAiDk20AAAAAAAAAAAAAAAAAAAAiDg00QIAAAAAAAAAAAAAAAAAACDi0EQLAAAAAAAAAAAAAAAAAACAiEMTLQAAAAAAAAAAAAAAAAAAACIOTbQAAAAAAAAAAAAAAAAAAACIODTRAgAAAAAAAAAAAAAAAAAAIOLQRAsAAAAAAAAAAAAAAAAAAICIQxMtAAAAAAAAAAAAAAAAAAAAIg5NtAAAAAAAAAAAAAAAAAAAAIg4NNECAAAAAAAAAAAAAAAAAAAg4tBECwAAAAAAAAAAAAAAAAAAgIjz/wEM39W8Y8/D7AAAAABJRU5ErkJggg==",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Your answer here\n",
"# Including fitted values\n",
"school['fit_slopes'] = mix2.fittedvalues\n",
"school['fit_intercept'] = mix.fittedvalues\n",
"(sns.relplot(data=school,\n",
" x='homework', y='math',\n",
" col='schid', col_wrap=5,\n",
" kind='scatter')\n",
" .map_dataframe(sns.lineplot, x='homework', y='fit_intercept', color='black', label='Intercepts only')\n",
" .map_dataframe(sns.lineplot, x='homework', y='fit_slopes', color='grey', label='Intercepts and slopes')\n",
" .add_legend()\n",
")"
]
},
{
"cell_type": "markdown",
"id": "5e4dfbfa-cc53-4198-a908-22cf75c0638e",
"metadata": {},
"source": [
"### 2. Cosmetics and attractiveness\n",
"In the workshop we examined a model that included a random intercept for participants, a random intercept for models (both of those accounting for baseline levels of attractiveness ratings that each participant and model gives) and a random slope for cosmetics for each model (the model figures out the effect of a makeup application on the attractiveness of each model). \n",
"\n",
"There's at least one more effect that was not considered here, which is how makeup affects the perceptions of each **rater**. Each rater may differ in their response to cosmetics, with some liking it, and some being put off by it. Can you read in the data from the example and expand the model to include the random slope for raters too?"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "630bef2f-50ed-47f7-8047-9620a660fa26",
"metadata": {
"editable": true,
"slideshow": {
"slide_type": ""
},
"tags": [
"hide-input"
]
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
" Model: MixedLM Dependent Variable: rating \n",
" \n",
"\n",
" No. Observations: 3003 Method: REML \n",
" \n",
"\n",
" No. Groups: 1 Scale: 1.4235 \n",
" \n",
"\n",
" Min. group size: 3003 Log-Likelihood: -5048.0688 \n",
" \n",
"\n",
" Max. group size: 3003 Converged: Yes \n",
" \n",
"\n",
" Mean group size: 3003.0 \n",
" \n",
"
\n",
"\n",
"\n",
" Coef. Std.Err. z P>|z| [0.025 0.975] \n",
" \n",
"\n",
" Intercept 3.231 0.152 21.265 0.000 2.933 3.529 \n",
" \n",
"\n",
" cosmetics_code 1.163 0.145 8.008 0.000 0.878 1.448 \n",
" \n",
"\n",
" cosmetics_model Var 0.514 0.122 \n",
" \n",
"\n",
" cosmetics_pid Var 0.322 0.063 \n",
" \n",
"\n",
" model_id Var 0.561 0.125 \n",
" \n",
"\n",
" pid Var 0.464 0.069 \n",
" \n",
"
\n"
],
"text/latex": [
"\\begin{table}\n",
"\\caption{Mixed Linear Model Regression Results}\n",
"\\label{}\n",
"\\begin{center}\n",
"\\begin{tabular}{llll}\n",
"\\hline\n",
"Model: & MixedLM & Dependent Variable: & rating \\\\\n",
"No. Observations: & 3003 & Method: & REML \\\\\n",
"No. Groups: & 1 & Scale: & 1.4235 \\\\\n",
"Min. group size: & 3003 & Log-Likelihood: & -5048.0688 \\\\\n",
"Max. group size: & 3003 & Converged: & Yes \\\\\n",
"Mean group size: & 3003.0 & & \\\\\n",
"\\hline\n",
"\\end{tabular}\n",
"\\end{center}\n",
"\n",
"\\begin{center}\n",
"\\begin{tabular}{lrrrrrr}\n",
"\\hline\n",
" & Coef. & Std.Err. & z & P$> |$z$|$ & [0.025 & 0.975] \\\\\n",
"\\hline\n",
"Intercept & 3.231 & 0.152 & 21.265 & 0.000 & 2.933 & 3.529 \\\\\n",
"cosmetics\\_code & 1.163 & 0.145 & 8.008 & 0.000 & 0.878 & 1.448 \\\\\n",
"cosmetics\\_model Var & 0.514 & 0.122 & & & & \\\\\n",
"cosmetics\\_pid Var & 0.322 & 0.063 & & & & \\\\\n",
"model\\_id Var & 0.561 & 0.125 & & & & \\\\\n",
"pid Var & 0.464 & 0.069 & & & & \\\\\n",
"\\hline\n",
"\\end{tabular}\n",
"\\end{center}\n",
"\\end{table}\n",
"\\bigskip\n"
],
"text/plain": [
"\n",
"\"\"\"\n",
" Mixed Linear Model Regression Results\n",
"=============================================================\n",
"Model: MixedLM Dependent Variable: rating \n",
"No. Observations: 3003 Method: REML \n",
"No. Groups: 1 Scale: 1.4235 \n",
"Min. group size: 3003 Log-Likelihood: -5048.0688\n",
"Max. group size: 3003 Converged: Yes \n",
"Mean group size: 3003.0 \n",
"-------------------------------------------------------------\n",
" Coef. Std.Err. z P>|z| [0.025 0.975]\n",
"-------------------------------------------------------------\n",
"Intercept 3.231 0.152 21.265 0.000 2.933 3.529\n",
"cosmetics_code 1.163 0.145 8.008 0.000 0.878 1.448\n",
"cosmetics_model Var 0.514 0.122 \n",
"cosmetics_pid Var 0.322 0.063 \n",
"model_id Var 0.561 0.125 \n",
"pid Var 0.464 0.069 \n",
"=============================================================\n",
"\n",
"\"\"\""
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Your answer here\n",
"# Read in data\n",
"cosmetics = pd.read_csv('https://raw.githubusercontent.com/alexjonesphd/py4psy2024/refs/heads/main/jones_kramer_2015.csv')\n",
"\n",
"# Add the grouping factor\n",
"cosmetics['grouping'] = 1\n",
"\n",
"# Expand the random effects to include rater random slopes like this\n",
"re = {'pid': '0 + C(pid)', \n",
" 'model_id': '0 + C(model_id)',\n",
" 'cosmetics_model': '0 + C(model_id):cosmetics_code',\n",
" 'cosmetics_pid': '0 + C(pid):cosmetics_code'}\n",
"\n",
"# Fit the odel\n",
"expand = smf.mixedlm('rating ~ cosmetics_code',\n",
" groups='grouping',\n",
" vc_formula=re,\n",
" data=cosmetics).fit()\n",
"\n",
"expand.summary()"
]
},
{
"cell_type": "markdown",
"id": "f01b0cc8-28d9-4c19-b3b2-fcdb588a0229",
"metadata": {},
"source": [
"Once you have estimated this model, can you figure out what source of variation contributes the most to the attractiveness judgements out of:\n",
"- Baseline attractiveness of models\n",
"- Baseline tendency of attractiveness ratings of raters\n",
"- Variation in the effect of cosmetics on models\n",
"- Variation in the effect of cosmetics on participants?"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "ff3e63cc-745d-4599-8f94-63b69dbc704f",
"metadata": {
"editable": true,
"slideshow": {
"slide_type": ""
},
"tags": [
"hide-input"
]
},
"outputs": [
{
"data": {
"text/plain": [
"array([0.15664007, 0.09793443, 0.170859 , 0.14117325])"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Your answer here\n",
"# Sum up all random effects\n",
"total_variance = expand.vcomp.sum() + expand.scale\n",
"\n",
"# Divide the vcomp by the total\n",
"expand.vcomp/total_variance"
]
},
{
"cell_type": "markdown",
"id": "7f571975-d5ba-49d9-82f3-60549f0bf630",
"metadata": {},
"source": [
"As an additional challenge - can you find the *rater* with the largest and smallest slope for cosmetics? This directly translates into someone for who cosmetics increased their ratings the most, and the one for who makeup was a major turn off. You will need to filter down the random effects which can be quite tricky."
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "0611e536-66fb-40ec-b199-9fcc32807796",
"metadata": {
"editable": true,
"slideshow": {
"slide_type": ""
},
"tags": [
"hide-input"
]
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"1 cosmetics_pid[C(pid)[58]:cosmetics_code]\n",
"dtype: object 1 cosmetics_pid[C(pid)[75]:cosmetics_code]\n",
"dtype: object\n"
]
}
],
"source": [
"# Your answer here\n",
"# Convert random effects to a dataframe\n",
"ranef = pd.DataFrame(expand.random_effects)\n",
"\n",
"# Filter it to include only PID and cosmetics_code\n",
"ppt_slopes = ranef[ranef.index.str.contains('cosmetics_code') & ranef.index.str.contains('pid')]\n",
"\n",
"# With that, find the min + max\n",
"mini = ppt_slopes.idxmin()\n",
"maxi = ppt_slopes.idxmax()\n",
"\n",
"print(mini, maxi)"
]
},
{
"cell_type": "markdown",
"id": "cb2a0663-a2fd-4d4f-9e1c-407b70e35596",
"metadata": {},
"source": [
"### 3. Further challenges in linear mixed effects models \n",
"Linear mixed models are, essentially, a standard GLM with extra flexibility to account for observations in the data belonging to groups. As such, they are able to incorporate all the usual things a GLM can. Here, we'll use some more education data to examine whether there are differences between male and female A-level students on a Chemistry A-level score, and whether it is linked to their average GCSE score.\n",
"\n",
"This data can be found from the Bristol Centre for Multilevel Modelling, [here](https://www.bristol.ac.uk/cmm/learning/mmsoftware/data-rev.html]). Download the datasets, and upload the `chem97.txt` file to the server to access it. The code below will read in the file for you (assuming you have uploaded it) and rename the columns to something meaningful, but you can also see the readout on the above page for more detail."
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "46d093f1-69c7-4249-b6d4-64df6e3e8092",
"metadata": {
"editable": true,
"slideshow": {
"slide_type": ""
},
"tags": [
"hide-input"
]
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" local_education_authority_ID \n",
" school_ID \n",
" pupil_ID \n",
" chem_Alevel_score \n",
" female \n",
" age_in_months \n",
" avg_GCSE \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" 1.0 \n",
" 1.0 \n",
" 1.0 \n",
" 4.0 \n",
" 1 \n",
" 3.0 \n",
" 6.625 \n",
" \n",
" \n",
" 1 \n",
" 1.0 \n",
" 1.0 \n",
" 2.0 \n",
" 10.0 \n",
" 1 \n",
" -3.0 \n",
" 7.625 \n",
" \n",
" \n",
" 2 \n",
" 1.0 \n",
" 1.0 \n",
" 3.0 \n",
" 10.0 \n",
" 1 \n",
" -4.0 \n",
" 7.250 \n",
" \n",
" \n",
" 3 \n",
" 1.0 \n",
" 1.0 \n",
" 4.0 \n",
" 10.0 \n",
" 1 \n",
" -2.0 \n",
" 7.500 \n",
" \n",
" \n",
" 4 \n",
" 1.0 \n",
" 1.0 \n",
" 5.0 \n",
" 8.0 \n",
" 1 \n",
" -1.0 \n",
" 6.444 \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
" local_education_authority_ID school_ID pupil_ID chem_Alevel_score \\\n",
"0 1.0 1.0 1.0 4.0 \n",
"1 1.0 1.0 2.0 10.0 \n",
"2 1.0 1.0 3.0 10.0 \n",
"3 1.0 1.0 4.0 10.0 \n",
"4 1.0 1.0 5.0 8.0 \n",
"\n",
" female age_in_months avg_GCSE \n",
"0 1 3.0 6.625 \n",
"1 1 -3.0 7.625 \n",
"2 1 -4.0 7.250 \n",
"3 1 -2.0 7.500 \n",
"4 1 -1.0 6.444 "
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Reads in data and renames columns\n",
"chem97 = pd.read_table('chem97.txt', sep='\\s+', header=None)\n",
"chem97.columns = ['local_education_authority_ID', 'school_ID', 'pupil_ID', 'chem_Alevel_score', 'female', 'age_in_months', 'avg_GCSE']\n",
"chem97.head()"
]
},
{
"cell_type": "markdown",
"id": "a1cc4a81-b8c2-4e80-8835-5d7035cec12e",
"metadata": {},
"source": [
"Fit a linear mixed model that predicts chemistry A level score from the interaction between female (1 = yes, 0 = No) and aveage GCSE grade. Include random intercepts for education authority and school ID."
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "4e7778fe-79a5-42bb-b944-9ff758279e7f",
"metadata": {
"editable": true,
"slideshow": {
"slide_type": ""
},
"tags": [
"hide-input"
]
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
" Model: MixedLM Dependent Variable: chem_Alevel_score \n",
" \n",
"\n",
" No. Observations: 31022 Method: REML \n",
" \n",
"\n",
" No. Groups: 1 Scale: 5.0495 \n",
" \n",
"\n",
" Min. group size: 31022 Log-Likelihood: -70526.6060 \n",
" \n",
"\n",
" Max. group size: 31022 Converged: Yes \n",
" \n",
"\n",
" Mean group size: 31022.0 \n",
" \n",
"
\n",
"\n",
"\n",
" Coef. Std.Err. z P>|z| [0.025 0.975] \n",
" \n",
"\n",
" Intercept -9.500 0.133 -71.585 0.000 -9.760 -9.240 \n",
" \n",
"\n",
" female -2.377 0.209 -11.375 0.000 -2.787 -1.968 \n",
" \n",
"\n",
" avg_GCSE 2.460 0.021 115.526 0.000 2.418 2.502 \n",
" \n",
"\n",
" female:avg_GCSE 0.262 0.033 7.911 0.000 0.197 0.327 \n",
" \n",
"\n",
" ed_authority Var 0.021 0.007 \n",
" \n",
"\n",
" school Var 1.125 0.025 \n",
" \n",
"
\n"
],
"text/latex": [
"\\begin{table}\n",
"\\caption{Mixed Linear Model Regression Results}\n",
"\\label{}\n",
"\\begin{center}\n",
"\\begin{tabular}{llll}\n",
"\\hline\n",
"Model: & MixedLM & Dependent Variable: & chem\\_Alevel\\_score \\\\\n",
"No. Observations: & 31022 & Method: & REML \\\\\n",
"No. Groups: & 1 & Scale: & 5.0495 \\\\\n",
"Min. group size: & 31022 & Log-Likelihood: & -70526.6060 \\\\\n",
"Max. group size: & 31022 & Converged: & Yes \\\\\n",
"Mean group size: & 31022.0 & & \\\\\n",
"\\hline\n",
"\\end{tabular}\n",
"\\end{center}\n",
"\n",
"\\begin{center}\n",
"\\begin{tabular}{lrrrrrr}\n",
"\\hline\n",
" & Coef. & Std.Err. & z & P$> |$z$|$ & [0.025 & 0.975] \\\\\n",
"\\hline\n",
"Intercept & -9.500 & 0.133 & -71.585 & 0.000 & -9.760 & -9.240 \\\\\n",
"female & -2.377 & 0.209 & -11.375 & 0.000 & -2.787 & -1.968 \\\\\n",
"avg\\_GCSE & 2.460 & 0.021 & 115.526 & 0.000 & 2.418 & 2.502 \\\\\n",
"female:avg\\_GCSE & 0.262 & 0.033 & 7.911 & 0.000 & 0.197 & 0.327 \\\\\n",
"ed\\_authority Var & 0.021 & 0.007 & & & & \\\\\n",
"school Var & 1.125 & 0.025 & & & & \\\\\n",
"\\hline\n",
"\\end{tabular}\n",
"\\end{center}\n",
"\\end{table}\n",
"\\bigskip\n"
],
"text/plain": [
"\n",
"\"\"\"\n",
" Mixed Linear Model Regression Results\n",
"===============================================================\n",
"Model: MixedLM Dependent Variable: chem_Alevel_score\n",
"No. Observations: 31022 Method: REML \n",
"No. Groups: 1 Scale: 5.0495 \n",
"Min. group size: 31022 Log-Likelihood: -70526.6060 \n",
"Max. group size: 31022 Converged: Yes \n",
"Mean group size: 31022.0 \n",
"---------------------------------------------------------------\n",
" Coef. Std.Err. z P>|z| [0.025 0.975]\n",
"---------------------------------------------------------------\n",
"Intercept -9.500 0.133 -71.585 0.000 -9.760 -9.240\n",
"female -2.377 0.209 -11.375 0.000 -2.787 -1.968\n",
"avg_GCSE 2.460 0.021 115.526 0.000 2.418 2.502\n",
"female:avg_GCSE 0.262 0.033 7.911 0.000 0.197 0.327\n",
"ed_authority Var 0.021 0.007 \n",
"school Var 1.125 0.025 \n",
"===============================================================\n",
"\n",
"\"\"\""
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Your answer here\n",
"chem97['grouping'] = 1 # creates group\n",
"\n",
"# create random effects\n",
"re = {'ed_authority': '0 + C(local_education_authority_ID)',\n",
" 'school': '0 + C(school_ID)'}\n",
"\n",
"# Model - this MAY TAKE A WHILE!\n",
"md = smf.mixedlm('chem_Alevel_score ~ female * avg_GCSE', \n",
" groups='grouping',\n",
" vc_formula=re, \n",
" data=chem97).fit()\n",
"\n",
"md.summary()"
]
},
{
"cell_type": "markdown",
"id": "f6b99d99-5c04-4254-a469-ad87a8d09c7f",
"metadata": {},
"source": [
"With the model fitted, note the variance estimates and the coefficients. As with a GLM its not so easy to interpret whats going on - but we can rely on using average slopes to get conditional estimates, like always. Use `marginaleffects` to compute the slope for females and males with regards to GCSEs to explain the interaction. "
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "5089e071-4126-42b6-a1ed-705966a854b0",
"metadata": {
"editable": true,
"slideshow": {
"slide_type": ""
},
"tags": [
"hide-input"
]
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"
shape: (2, 10) female term contrast estimate std_error statistic p_value s_value conf_low conf_high i64 str str f64 f64 f64 f64 f64 f64 f64 0 "avg_GCSE" "mean(dY/dX)" 2.459902 0.021293 115.526716 0.0 inf 2.418169 2.501635 1 "avg_GCSE" "mean(dY/dX)" 2.721689 0.02665 102.127443 0.0 inf 2.669456 2.773922
"
],
"text/plain": [
"shape: (2, 10)\n",
"┌────────┬──────────┬─────────────┬──────────┬───┬─────────┬─────┬──────┬───────┐\n",
"│ female ┆ Term ┆ Contrast ┆ Estimate ┆ … ┆ P(>|z|) ┆ S ┆ 2.5% ┆ 97.5% │\n",
"│ --- ┆ --- ┆ --- ┆ --- ┆ ┆ --- ┆ --- ┆ --- ┆ --- │\n",
"│ str ┆ str ┆ str ┆ str ┆ ┆ str ┆ str ┆ str ┆ str │\n",
"╞════════╪══════════╪═════════════╪══════════╪═══╪═════════╪═════╪══════╪═══════╡\n",
"│ 0 ┆ avg_GCSE ┆ mean(dY/dX) ┆ 2.46 ┆ … ┆ 0 ┆ inf ┆ 2.42 ┆ 2.5 │\n",
"│ 1 ┆ avg_GCSE ┆ mean(dY/dX) ┆ 2.72 ┆ … ┆ 0 ┆ inf ┆ 2.67 ┆ 2.77 │\n",
"└────────┴──────────┴─────────────┴──────────┴───┴─────────┴─────┴──────┴───────┘\n",
"\n",
"Columns: female, term, contrast, estimate, std_error, statistic, p_value, s_value, conf_low, conf_high"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Your answer here\n",
"# Get the slopes of GCSE for each sex\n",
"me.slopes(md, variables=['avg_GCSE'], by='female')"
]
},
{
"cell_type": "markdown",
"id": "bf89b20f-1a7a-4bb9-9a16-faa570aabd8d",
"metadata": {},
"source": [
"### 4. Studying individual differences with mixed models\n",
"As a final example, lets see how mixed models can be used to understand measures of individual differences. \n",
"\n",
"In the next dataset, we'll see how individual raters are sensitive to facial cues of symmetry, averageness, and sexual dimorphism, three important predictors of facial attractiveness. Participants rated 100 faces on how attractive they thought they were (on a scale of 1-100). For each of the faces, we measured how symmetrical, distinctive, and sexually dimorphic it was. \n",
"\n",
"First, read in the data from the following link and display the top 10 rows: https://raw.githubusercontent.com/alexjonesphd/py4psy2024/refs/heads/main/cue_sensitivity.csv"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "b907c005-ae73-4259-862e-64133d056811",
"metadata": {
"editable": true,
"slideshow": {
"slide_type": ""
},
"tags": [
"hide-input"
]
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" pid \n",
" face_id \n",
" face_sex \n",
" attractiveness \n",
" distinctiveness \n",
" symmetry \n",
" dimorphism \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" 3168134.0 \n",
" galina \n",
" female \n",
" 44 \n",
" -1.535898 \n",
" -0.926857 \n",
" 0.056173 \n",
" \n",
" \n",
" 1 \n",
" 3168134.0 \n",
" tamara \n",
" female \n",
" 25 \n",
" 1.506863 \n",
" 0.567697 \n",
" -1.542840 \n",
" \n",
" \n",
" 2 \n",
" 3168134.0 \n",
" blazej \n",
" male \n",
" 50 \n",
" 1.066100 \n",
" -1.977071 \n",
" 0.758609 \n",
" \n",
" \n",
" 3 \n",
" 3168134.0 \n",
" irena \n",
" female \n",
" 58 \n",
" -1.196141 \n",
" -0.929967 \n",
" 0.751037 \n",
" \n",
" \n",
" 4 \n",
" 3168134.0 \n",
" jan \n",
" male \n",
" 27 \n",
" 0.039301 \n",
" 0.769465 \n",
" -0.082505 \n",
" \n",
" \n",
" 5 \n",
" 3168134.0 \n",
" svatopluk \n",
" male \n",
" 32 \n",
" -0.676461 \n",
" -1.102852 \n",
" -0.591465 \n",
" \n",
" \n",
" 6 \n",
" 3168134.0 \n",
" miroslav1 \n",
" male \n",
" 35 \n",
" 0.479499 \n",
" 1.627821 \n",
" -0.714593 \n",
" \n",
" \n",
" 7 \n",
" 3168134.0 \n",
" viola \n",
" female \n",
" 61 \n",
" -1.300203 \n",
" 1.283004 \n",
" 0.304360 \n",
" \n",
" \n",
" 8 \n",
" 3168134.0 \n",
" vincent \n",
" male \n",
" 2 \n",
" 0.715087 \n",
" -1.160949 \n",
" 1.252532 \n",
" \n",
" \n",
" 9 \n",
" 3168134.0 \n",
" blazana \n",
" female \n",
" 69 \n",
" -1.004162 \n",
" 0.838649 \n",
" -0.965687 \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
" pid face_id face_sex attractiveness distinctiveness symmetry \\\n",
"0 3168134.0 galina female 44 -1.535898 -0.926857 \n",
"1 3168134.0 tamara female 25 1.506863 0.567697 \n",
"2 3168134.0 blazej male 50 1.066100 -1.977071 \n",
"3 3168134.0 irena female 58 -1.196141 -0.929967 \n",
"4 3168134.0 jan male 27 0.039301 0.769465 \n",
"5 3168134.0 svatopluk male 32 -0.676461 -1.102852 \n",
"6 3168134.0 miroslav1 male 35 0.479499 1.627821 \n",
"7 3168134.0 viola female 61 -1.300203 1.283004 \n",
"8 3168134.0 vincent male 2 0.715087 -1.160949 \n",
"9 3168134.0 blazana female 69 -1.004162 0.838649 \n",
"\n",
" dimorphism \n",
"0 0.056173 \n",
"1 -1.542840 \n",
"2 0.758609 \n",
"3 0.751037 \n",
"4 -0.082505 \n",
"5 -0.591465 \n",
"6 -0.714593 \n",
"7 0.304360 \n",
"8 1.252532 \n",
"9 -0.965687 "
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Your answer here\n",
"cues = pd.read_csv('https://raw.githubusercontent.com/alexjonesphd/py4psy2024/refs/heads/main/cue_sensitivity.csv')\n",
"cues.head(10)"
]
},
{
"cell_type": "markdown",
"id": "f591df0c-f4e1-4f8e-9ce6-4287df1e8c1c",
"metadata": {},
"source": [
"Each participant rates 100 faces and we know the measurements of those faces. Lets fit a model that uses those measurements as predictors and accounts for participant and face variability with random slopes, as a starter."
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "b9da4e9b-eadf-41d2-a8a6-2155808441c1",
"metadata": {
"editable": true,
"slideshow": {
"slide_type": ""
},
"tags": [
"hide-input"
]
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
" Model: MixedLM Dependent Variable: attractiveness \n",
" \n",
"\n",
" No. Observations: 3200 Method: REML \n",
" \n",
"\n",
" No. Groups: 1 Scale: 227.0840 \n",
" \n",
"\n",
" Min. group size: 3200 Log-Likelihood: -13408.9376 \n",
" \n",
"\n",
" Max. group size: 3200 Converged: Yes \n",
" \n",
"\n",
" Mean group size: 3200.0 \n",
" \n",
"
\n",
"\n",
"\n",
" Coef. Std.Err. z P>|z| [0.025 0.975] \n",
" \n",
"\n",
" Intercept 35.681 2.225 16.038 0.000 31.321 40.042 \n",
" \n",
"\n",
" distinctiveness -2.398 1.013 -2.367 0.018 -4.383 -0.413 \n",
" \n",
"\n",
" symmetry -1.763 1.007 -1.752 0.080 -3.736 0.209 \n",
" \n",
"\n",
" dimorphism -0.389 1.034 -0.376 0.707 -2.415 1.638 \n",
" \n",
"\n",
" face Var 89.992 0.944 \n",
" \n",
"\n",
" pid Var 127.324 2.195 \n",
" \n",
"
\n"
],
"text/latex": [
"\\begin{table}\n",
"\\caption{Mixed Linear Model Regression Results}\n",
"\\label{}\n",
"\\begin{center}\n",
"\\begin{tabular}{llll}\n",
"\\hline\n",
"Model: & MixedLM & Dependent Variable: & attractiveness \\\\\n",
"No. Observations: & 3200 & Method: & REML \\\\\n",
"No. Groups: & 1 & Scale: & 227.0840 \\\\\n",
"Min. group size: & 3200 & Log-Likelihood: & -13408.9376 \\\\\n",
"Max. group size: & 3200 & Converged: & Yes \\\\\n",
"Mean group size: & 3200.0 & & \\\\\n",
"\\hline\n",
"\\end{tabular}\n",
"\\end{center}\n",
"\n",
"\\begin{center}\n",
"\\begin{tabular}{lrrrrrr}\n",
"\\hline\n",
" & Coef. & Std.Err. & z & P$> |$z$|$ & [0.025 & 0.975] \\\\\n",
"\\hline\n",
"Intercept & 35.681 & 2.225 & 16.038 & 0.000 & 31.321 & 40.042 \\\\\n",
"distinctiveness & -2.398 & 1.013 & -2.367 & 0.018 & -4.383 & -0.413 \\\\\n",
"symmetry & -1.763 & 1.007 & -1.752 & 0.080 & -3.736 & 0.209 \\\\\n",
"dimorphism & -0.389 & 1.034 & -0.376 & 0.707 & -2.415 & 1.638 \\\\\n",
"face Var & 89.992 & 0.944 & & & & \\\\\n",
"pid Var & 127.324 & 2.195 & & & & \\\\\n",
"\\hline\n",
"\\end{tabular}\n",
"\\end{center}\n",
"\\end{table}\n",
"\\bigskip\n"
],
"text/plain": [
"\n",
"\"\"\"\n",
" Mixed Linear Model Regression Results\n",
"============================================================\n",
"Model: MixedLM Dependent Variable: attractiveness\n",
"No. Observations: 3200 Method: REML \n",
"No. Groups: 1 Scale: 227.0840 \n",
"Min. group size: 3200 Log-Likelihood: -13408.9376 \n",
"Max. group size: 3200 Converged: Yes \n",
"Mean group size: 3200.0 \n",
"------------------------------------------------------------\n",
" Coef. Std.Err. z P>|z| [0.025 0.975]\n",
"------------------------------------------------------------\n",
"Intercept 35.681 2.225 16.038 0.000 31.321 40.042\n",
"distinctiveness -2.398 1.013 -2.367 0.018 -4.383 -0.413\n",
"symmetry -1.763 1.007 -1.752 0.080 -3.736 0.209\n",
"dimorphism -0.389 1.034 -0.376 0.707 -2.415 1.638\n",
"face Var 89.992 0.944 \n",
"pid Var 127.324 2.195 \n",
"============================================================\n",
"\n",
"\"\"\""
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Your answer here\n",
"cues['grouping'] = 1\n",
"\n",
"# VC\n",
"vc = {'pid': '0 + C(pid)',\n",
" 'face': '0 + C(face_id)'}\n",
"\n",
"# models\n",
"model1 = smf.mixedlm('attractiveness ~ distinctiveness + symmetry + dimorphism',\n",
" groups='grouping', vc_formula=vc, data=cues).fit()\n",
"\n",
"model1.summary()"
]
},
{
"cell_type": "markdown",
"id": "6a700948-b732-4d46-b44f-1cedfb376ed0",
"metadata": {},
"source": [
"This model efffectively accounts for participant variability and face variability, and suggests only distinctiveness decreases attractiveness. But we must be clear on what it implies - it says that the effect of, say, distinctiveness is *exactly* the same for all raters. That is, raters are influenced by the distinctiveness of the face in the same way. Is this realistic? Would it be better to allow each rater their own distinctiveness slope (as well as others) to allow their own preferences to come out? We can do this of course by including a random slope for each rater for each trait. Do that below and see what happens."
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "282d72e8-be8d-4254-8c43-b6c17684eecc",
"metadata": {
"editable": true,
"slideshow": {
"slide_type": ""
},
"tags": [
"hide-input"
]
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/opt/miniconda3/envs/py11/lib/python3.11/site-packages/statsmodels/base/model.py:607: ConvergenceWarning: Maximum Likelihood optimization failed to converge. Check mle_retvals\n",
"/opt/miniconda3/envs/py11/lib/python3.11/site-packages/statsmodels/regression/mixed_linear_model.py:2201: ConvergenceWarning: Retrying MixedLM optimization with lbfgs\n",
"/opt/miniconda3/envs/py11/lib/python3.11/site-packages/statsmodels/regression/mixed_linear_model.py:2262: ConvergenceWarning: The Hessian matrix at the estimated parameter values is not positive definite.\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
" Model: MixedLM Dependent Variable: attractiveness \n",
" \n",
"\n",
" No. Observations: 3200 Method: REML \n",
" \n",
"\n",
" No. Groups: 1 Scale: 222.5967 \n",
" \n",
"\n",
" Min. group size: 3200 Log-Likelihood: -13424.8905 \n",
" \n",
"\n",
" Max. group size: 3200 Converged: Yes \n",
" \n",
"\n",
" Mean group size: 3200.0 \n",
" \n",
"
\n",
"\n",
"\n",
" Coef. Std.Err. z P>|z| [0.025 0.975] \n",
" \n",
"\n",
" Intercept 35.681 2.282 15.633 0.000 31.208 40.155 \n",
" \n",
"\n",
" distinctiveness -2.398 1.517 -1.581 0.114 -5.371 0.575 \n",
" \n",
"\n",
" symmetry -1.763 1.509 -1.169 0.243 -4.721 1.194 \n",
" \n",
"\n",
" dimorphism -0.389 1.549 -0.251 0.802 -3.425 2.648 \n",
" \n",
"\n",
" dimorphism Var 0.670 0.121 \n",
" \n",
"\n",
" distinctiveness Var 0.591 0.060 \n",
" \n",
"\n",
" face Var 209.005 \n",
" \n",
"\n",
" pid Var 97.593 1.352 \n",
" \n",
"\n",
" symmetry Var 0.769 0.143 \n",
" \n",
"
\n"
],
"text/latex": [
"\\begin{table}\n",
"\\caption{Mixed Linear Model Regression Results}\n",
"\\label{}\n",
"\\begin{center}\n",
"\\begin{tabular}{llll}\n",
"\\hline\n",
"Model: & MixedLM & Dependent Variable: & attractiveness \\\\\n",
"No. Observations: & 3200 & Method: & REML \\\\\n",
"No. Groups: & 1 & Scale: & 222.5967 \\\\\n",
"Min. group size: & 3200 & Log-Likelihood: & -13424.8905 \\\\\n",
"Max. group size: & 3200 & Converged: & Yes \\\\\n",
"Mean group size: & 3200.0 & & \\\\\n",
"\\hline\n",
"\\end{tabular}\n",
"\\end{center}\n",
"\n",
"\\begin{center}\n",
"\\begin{tabular}{lrrrrrr}\n",
"\\hline\n",
" & Coef. & Std.Err. & z & P$> |$z$|$ & [0.025 & 0.975] \\\\\n",
"\\hline\n",
"Intercept & 35.681 & 2.282 & 15.633 & 0.000 & 31.208 & 40.155 \\\\\n",
"distinctiveness & -2.398 & 1.517 & -1.581 & 0.114 & -5.371 & 0.575 \\\\\n",
"symmetry & -1.763 & 1.509 & -1.169 & 0.243 & -4.721 & 1.194 \\\\\n",
"dimorphism & -0.389 & 1.549 & -0.251 & 0.802 & -3.425 & 2.648 \\\\\n",
"dimorphism Var & 0.670 & 0.121 & & & & \\\\\n",
"distinctiveness Var & 0.591 & 0.060 & & & & \\\\\n",
"face Var & 209.005 & & & & & \\\\\n",
"pid Var & 97.593 & 1.352 & & & & \\\\\n",
"symmetry Var & 0.769 & 0.143 & & & & \\\\\n",
"\\hline\n",
"\\end{tabular}\n",
"\\end{center}\n",
"\\end{table}\n",
"\\bigskip\n"
],
"text/plain": [
"\n",
"\"\"\"\n",
" Mixed Linear Model Regression Results\n",
"===============================================================\n",
"Model: MixedLM Dependent Variable: attractiveness\n",
"No. Observations: 3200 Method: REML \n",
"No. Groups: 1 Scale: 222.5967 \n",
"Min. group size: 3200 Log-Likelihood: -13424.8905 \n",
"Max. group size: 3200 Converged: Yes \n",
"Mean group size: 3200.0 \n",
"---------------------------------------------------------------\n",
" Coef. Std.Err. z P>|z| [0.025 0.975]\n",
"---------------------------------------------------------------\n",
"Intercept 35.681 2.282 15.633 0.000 31.208 40.155\n",
"distinctiveness -2.398 1.517 -1.581 0.114 -5.371 0.575\n",
"symmetry -1.763 1.509 -1.169 0.243 -4.721 1.194\n",
"dimorphism -0.389 1.549 -0.251 0.802 -3.425 2.648\n",
"dimorphism Var 0.670 0.121 \n",
"distinctiveness Var 0.591 0.060 \n",
"face Var 209.005 \n",
"pid Var 97.593 1.352 \n",
"symmetry Var 0.769 0.143 \n",
"===============================================================\n",
"\n",
"\"\"\""
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Your answer here\n",
"# VC\n",
"re = {'pid': '0 + C(pid)',\n",
" 'face': '0 + C(face_id)',\n",
" 'distinctiveness': '0 + C(pid):distinctiveness',\n",
" 'symmetry': '0 + C(pid):symmetry',\n",
" 'dimorphism': '0 + C(pid):dimorphism'}\n",
"\n",
"# models\n",
"model2 = smf.mixedlm('attractiveness ~ distinctiveness + symmetry + dimorphism',\n",
" groups='grouping', vc_formula=re, data=cues).fit()\n",
"\n",
"model2.summary()"
]
},
{
"cell_type": "markdown",
"id": "893abe23-0aef-4ba1-9ed1-9a8b114abd90",
"metadata": {},
"source": [
"Now the effects go away when you consider how variable these effects are for people. If we wanted, we could extract each persons individual slope to see how sensitive they are to an individual cue."
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.2"
}
},
"nbformat": 4,
"nbformat_minor": 5
}